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Abstract-Radiation models suitable for incorporation in reactive fluid flow codes are extended to calculate 
radiation in enclosures containing obstacles of very small thickness. The discrete transfer, the discrete 
ordinates and the finite volume method are employed to predict the heat transfer in two-dimensional 
enclosures and the results are compared with zone method calculations, with the total exchange areas 
determined by the Monte-Carlo method. All the methods predict similar heat fluxes, but the computational 
requirements are different. The discrete ordinates and the finite volume method are the most economical 

oneis. An application to a utility boiler is also presented. 0 1997 Elsevier Science Ltd. 

1. IINTRODUCTION 

The development of radiative heat transfer models 
has received significant attention for many years and 
several models are presently available [l]. However, 
in many relevant engineering problems, radiation is 
not the only physical phenomenon involved. In par- 
ticular, in combustion equipment the problem of cal- 
culation of radiative heat transfer is coupled with the 
modelling of a turb’ulent reactive flow. In this case 
successful models, such as the zone [2] and the Monte- 
Carlo [3] methods, a.re seldom used because the solu- 
tion algorithm is rather different from the solution 
algorithm employed in the modelling of the reactive 
flow, and also because they are computationally 
demanding. Other models, such as the flux method of 
Schuster-Schwarzchild [4] and its generalization for 
two- and three-dimensional domains, have low accu- 
racy. The spherical harmonics method is not accurate 
for low-order approximations, except in optically 
thick media, and the increase of accuracy achievable 
using high order approximations is mathematically 
involved [5]. Three of the most attractive methods, as 
far as accuracy and computational requirements are 
concerned, are the discrete transfer [6], the discrete 
ordinates [7, 81 and the finite-volume [9, lo] methods. 
They are easily incorporated in reactive fluid flow 
codes, and a comparison of their performance has 
recently been published [ 111. 

A related problem of practical relevance which has 
received little attention in the literature is the radiative 
heat transfer in enclosures containing obstacles, such 

as protrusions and obstructions. This problem was 
addressed by Sanchez and Smith [12], who presented 
a study on surface radiation exchange for two-dimen- 
sional rectangular enclosures with protrusions and 
obstructions containing a transparent medium, using 
the discrete ordinates method. A similar method was 
applied to a three-dimensional furnace with internal 
cooling-pipes which behave as obstacles as far as radi- 
ation is concerned [13]. Attention was focused on 
modelling highly directional shadowing effects caused 
by the cooling-pipes in the radiation intensity field. 
A simple procedure to deal with irregular Cartesian- 
coordinates-based geometries, and suitable to treat 
protrusions, obstructions and curved or inclined sur- 
faces was proposed by Chai et al. [14, 151. This pro- 
cedure was incorporated in the discrete ordinates 
method [ 141 and in the finite volume method [ 151, and 
applied to several two-dimensional problems. 

In some applications, the thickness of the obstacles 
is very small. A typical example occurs in power 
station boilers, where panels of superheaters are often 
hanged from the top of the radiation chamber. The 
thickness of these panels is much smaller than the 
overall dimensions of the boiler, typically two or three 
orders of magnitude. Therefore, if they were modelled 
as obstacles of finite thickness, it would be necessary 
to use small control volumes in the direction normal 
to the superheaters, in their neighbourhood, in order 
to account for their presence. Moreover, the grid used 
in the radiation calculations must be compatible with 
the grid employed to solve the transport equations 
that describe the turbulent reactive flow. The best way 
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NOMENCLATURE 

A area [m’] 
A,, A, area normal to the x- and y- 

directions, respectively [m’] 
Z&x, D,,, quantities defined by equation 

(141 b-1 
E emissive power [w m-*1 
Fi_j generalized radiation exchange factor 

from zone i to zone j 
G irradiation [w m-*1 
Z radiation intensity [w me2 sr-‘1 
Z,, Zn+ I Radiation intensities entering and 

leaving a control volume, respectively 
[w m-* sr-‘1 

i unit vector along x-direction 
J radiosity [W m-*1 
j unit vector along y-direction 
K number of volume zones 
N number of surface zones 
N,, N, number of polar and azimuthal solid 

angles per octant, respectively 
n unit vector normal to the wall 
4 net heat flux yW m-*1 
Q net heat rate [WI 
s source term w rnd3 sr-‘1 
SiS, total surface-surface exchange area 
~ b’l 
S,G, total surface-volume exchange area 

b*l 

s 
S 

T 
V 
x2 Y 
W/ 

direction of a radiation beam [m] 
unit vector along direction s 
temperature [K] 
volume [m’] 
coordinate directions [m] 
quadrature weight associated with the 
j-direction. 

Greek symbols 

:, 
weighted diamond differencing 
distance travelled by a radiation beam 
within a control volume [m] 

As2 solid angle [sr] 
E emissivity 
e polar angle 

;, r~ 
absorption coefficient [m-‘1 
direction cosines 

cr Stefan-Boltzmann constant 
4 azimuthal angle. 

Subscripts 
b black body 
e exit from a control volume 
i entrance into a control volume 
P grid node 
PQi direction defined by points P and Qi 
S surface 
W wall. 

to circumvent these difficulties is by modelling the 
panels of superheaters as obstacles of zero thickness, 
hereafter referred to as baffles. The simulation of 
enclosures with baffles presents a new situation which 
does not appear in case of obstacles of finite thickness, 
as treated in the works mentioned above. The new 
situation is the occurrence of adjacent control 
volumes, both within the physical domain, but with a 
solid interface which prevents radiation beams from 
crossing it. 

The objective of this paper is to adapt radiation 
models, suitable for incorporation in reactive fluid 
how codes, to handle enclosures with baffles and con- 
taining an emitting-absorbing medium. The following 
methods were selected for this purpose: the discrete 
transfer, the discrete ordinates and the finite volume 
method. In addition, the zone method is employed as a 
reference for comparison purposes, using the Monte- 
Carlo method to calculate the total exchange areas. A 
brief description of these methods, with an emphasis 
placed on the modifications required to handle the 
baffles, is presented below. The methods are then 
applied to three test cases and the results obtained are 
presented and discussed. 

2. THE RADIATION MODELS 

The radiation models are described below, with 
emphasis placed on the treatment of the baffles. 

2.1. The zone method (ZM) 
In the zone method the enclosure is divided into a 

finite number of isothermal volume and surface zones, 
and energy balances are performed for the radiative 
exchange between any two zones. The net radiative 
heat rate for surface zone i is calculated as : 

and a similar equation may be written for a volume 
zone k. The basic equations of the zone method are 
applied to an enclosure with baffles in the same ways 
as to an empty enclosure. This means that an equation 
is considered for each zone of the enclosure, including 
the surface zones on both sides of each baffle. There- 
fore, dealing with the baffles does not require any 
especial treatment within the framework of the zone 
method. 
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The total surface-surface and volume-surface ex- 
change areas may be expressed as : 

SiSj = A,E,F,_~ (2) 
-- 
SiGk = 41~~ VkFk_ti. (3) 

The generalized radiation exchange factor F between 
surface zone j (or volume zone k) and surface zone i 
is defined as the fraction of the total energy emitted 
by surface zonej (or volume zone k) that is absorbed 
by surface zone i, either directly or after any number 
of reflections. 

The radiation exchange factors were calculated 
using the Monte-Ca.rlo method [5,16,17] and emitting 
100,000 energy bundles from each surface and volume 
zones. The generalized radiation exchange factor 
between zone j and zone i is approximated as the ratio 
of the number of bundles absorbed by zone i and 
originally emitted from zone j, to the total number of 
bundles released from zone j. Once the coordinates of 
the emission point of a bundle, its direction and the 
distance travelled before absorption have been ran- 
domly defined, the point where the bundle intersects 
a boundary (wall or baffle) must be determined. When 
tracking an energy bundle in a geometry with baffles, 
it is necessary to check if the baffles are crossed or not. 
To simplify the ca18culation of the coordinates of the 
point where the energy bundle hits a boundary, the 
enclosure is divided into smaller ones, such that the 
small enclosures do not contain any baffle. 

An example is illustrated in Fig. 1, which shows an 
enclosure with thrlee baffles divided into four sub- 
domains : A, B, C and D. An energy bundle emitted 
from a surface or volume zone of subdomain A may 
be absorbed by a surface or volume zone of that sub- 
domain (e.g. energy bundle E, in Fig. 1) or may pass 
to the neighbouring subdomain B without being 
absorbed (e.g. energy bundles El, E3 and E4 in Fig. 1). 
To distinguish these two situations, the coordinates 
of the point where the energy bundle intersects the 
boundary of subd’omain A are determined. If the 
energy bundle passes to subdomain B, then the coor- 

Fig. 1. Division Iof an enclosure into subdomains. The incident radiative heat fluxes G at the central 

dinates of the point where it crosses again the bound- 
ary of subdomain B must be determined. Hence, it 
will be possible to find if the energy bundle is absorbed 
by a surface or volume zone in subdomain B, if it 
passes to subdomain A (after one or more reflections) 
or passes to subdomain C (e.g. energy bundles E3 and 
E4 in Fig. 1). This procedure is repeated until the 
energy bundle is absorbed. Energy bundles emitted 
from zones in other subdomains are treated similarly. 

In this way, the problem of tracking the energy 
bundles in a geometry with baffles is decomposed into 
smaller problems, such that each one of them consists 
in a standard problem of tracking an energy bundle 
in a geometry without baffles. 

2.2. The discrete transfer method (DTM) 
The DTM is based on the solution of the radiative 

heat transfer equation along specified directions. If a 
non-scattering grey medium in local thermodynamic 
equilibrium is assumed, this equation may be written 
for a radiation beam travelling along direction s in the 
following form 

dZ 
ds= 

- rcz+ IcZb. 

The physical domain is divided into control volumes 
and the temperature and absorption coefficient of the 
medium are taken as constant in each one of them. 
Then, the central point P of each cell on the boundary 
is determined and a hemisphere centred at P is con- 
sidered and subdivided into a prescribed number of 
solid angles. Each solid angle defines a direction along 
which the radiative transfer equation is solved. 

Hence, given a point P at the centre of a cell face 
on the boundary a radiation beam is fired from P for 
each one of the directions selected above. The path 
of a radiation beam is followed until it hits another 
boundary. Let Q be the impingement point, as shown 
in Fig. 2(a). Although, in general, Qi is not the central 
point of a boundary cell, it is assumed that the radi- 
ation intensity at Q and at the central point of the cell 
containing Qi are equal. Then, starting from Qi, the 
path of the beam is followed back to the origin P and 
equation (4) is integrated analytically along this path 
yielding the recurrence relation 

Z n+l = Z,e-“‘“+Z,(l -ePrss). (5) 

If there are baffles, they are regarded as additional 
boundaries. This means that, in the example illus- 
trated in Fig. 2(b), equation (4) would be integrated 
only from R to P. Radiation beams are also fired from 
the baffles. Hence, taking the cell face centred at point 
A as an example [see Fig. 2(b)], a hemisphere centred 
at A, on the left-hand side of the baffle, defines new 
directions>ong which equation (4) is solved, e.g. 
direction AB. Similarly, the hemisphere centred at A, 
on the right-hand side of the baffle, determines new 
directions, such as AC. 
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Fig. 2. Ray tracing in the discrete transfer method. 

points of cell faces on the boundary (e.g. point P), or 
at the central points of cell faces on the baffles (e.g. 
point A), are calculated by adding up the con- 
tributions due to all the radiation beams that reach 
those points. Thus, the incident heat flux at P is given 

by 

GP = 1 Zpe,(spp, * nW&, (6) 

where the summation extends over all the directions 
associated to the solid angles resultant from the dis- 
cretization of the hemisphere centred at P. In this 
equation, n is the unit vector normal to the wall at 
point P, and s is the unit vector along the direction 
from P to Q+ This direction is denoted by the subscript 

PQt. 
The solution of the radiative heat transfer equation 

requires as boundary conditions knowledge of the 
temperature or heat flux distribution along the wall 
and on both sides of the baffles. The two sides of a 
baffle may have different emissivities and tempera- 
tures. If the wall temperature is prescribed, the bound- 
ary condition may be written as : 

Jp = a,&-$+(l-e,)Gp. (7) 

Other boundary conditions are dealt with as reported 
in [6]. The calculation procedure is iterative, unless 
E, = 1, because the radiation intensities at the bound- 
aries are not known a priori. 

2.3. The discrete ordinates method (DOM) 
The DOM relies on a discrete representation of the 

directional dependence of the radiation intensity. The 

radiative heat transfer equation (4) is solved for a set 
of directions which span the total solid angle range of 
4n around a point in space, and the integrals over 
solid angles are approximated using a numerical quad- 
rature rule. The direction cosines and the quadrature 
weights used in the present work were taken from 
Modest [5]. 

Equation (4) may be written as follows for any 
discrete direction s, and for a two-dimensional prob- 
lem : 

g +q$ = -lcz,+Kzb+S. (8) 

S is a source term used to deal with the baffles, ident- 
ical to the one proposed by Chai et al. [14] to deal 
with irregular geometries using Cartesian coordinates. 
The source term is zero, except for the control volumes 
adjacent to the boundaries (walls or baffles), and it is 
used to insert the boundary conditions as explained 
below. 

Equation (8) is integrated over each control 
volume, yielding a relationship between the volume 
average intensity, Zp,, and the radiation intensities 
entering (subscript i) and leaving subscript e) the con- 
trol volume [ 141 : 

4, = 
(K& + s) VI’+ bt,k&j+ h,~~,~y,~ 

KVY+]&%+]%]=$ 
. (9) 

The parameter y relates the incoming and outgoing 
radiation intensities to the volume average intensity, 
according to the following relations : 

4, = Yql+ (1 - YVY,,, (104 

4, = rz,,,i + (1 -Y&i. (lob) 

The most commonly used values of y are y = l/2 (dia- 
mond scheme) and y = 1 (step scheme). The step 
scheme was used in the present work. 

The boundary conditions may be written as follows, 
taking as an example a surface with x = constant and 
&>O: 

z, = E,Zbw + +;TO w,Z,K,l. (11) 
I 

This boundary condition is also valid for the right- 
hand side of a vertical baffle. It is enforced via the 
source term S by setting 

for the control volumes adjacent to the boundary, and 
by putting I,,( = 0 in equation (9). The remaining 
boundaries (x = constant and 5, < 0 ; y = constant 
and vi > 0 ; y = constant and q, < 0) are treated simi- 
larly. 

The numerical solution of equation (9) is carried 
out starting from one of the corners of the com- 
putational domain, depending on the sign of the direc- 



Modelling of radiative heat transfer 749 

tion cosines. In each iteration, and for each one of the 
selected directions, the radiosity of the boundaries and 
the internal radiation sources in each cell are either 
known or guessed from the values computed in the 
previous iteration. Hence, all the control volumes are 
visited to compute the radiation intensities ZP, accord- 
ing to (9) and using the auxiliary relations (10). After 
all the directions have been treated, the radiosities 
of the boundaries and the radiation sources may be 
updated and the iteration process continues until the 
convergence criterion has been satisfied. 

2.4. The finite volume method (FVM) 
The FVM has many similarities with the DOM. The 

magnitude of the radiation intensity is also assumed 
constant in each discrete direction, and the radiative 
transfer equation is solved for a set of discrete direc- 
tions which span the total solid angle of 47~. 

To obtain the discrete equations, the radiative 
transfer equation is integrated over each control vol- 
ume and each solid angle in which the space is discre- 
tized. While in the DOM the direction si is taken as a 
constant within the solid angle AR, in the FVM it 
varies, following the variation of the polar and azi- 
muthal angles within A!&. Therefore, a different dis- 
cretized equation is obtained, which may be written 
as follows [ 151 : 

where 

Di,cx = 
s 

si * i d!& Di,, = 
5 

si*jdS2, (14) 
AR, mn, 

and 

The source term S has the same meaning and plays 
the same role explained above for the DOM. The 
discrete ordinates equation (9) would be recovered 
from equation (13) by replacing D,, and Di,Cy by ]& 
and ]qJ, respectively, and by deleting AQ from the 
numerator and denominator. 

The boundary conditions may be written as follows 
for a surface with x = constant and Di,Cx > 0 : 

z, = &,Z&.. + +s g,LS,, ISj*il dQIZ,. 06) 
i I 

This boundary condition is introduced by evaluating 
the source term S as : 

s= 4cxAx 
Vy AQ dbw + 

for the control volume adjacent to the boundary (wall 
or baffle) and by setting Z,,! = 0 in equation (13). A 
similar treatment is used for the other boundaries. 
The solution procedure is identical to that described 
for the DOM. 

3. RESULTS AND DISCUSSION 

The radiation models described above were applied 
to three test cases. The results obtained are presented 
and discussed in this section. 

3.1. Two-dimensional square enclosure with one baffle 
A two-dimensional square enclosure was con- 

sidered in the first test case. A baffle is suspended on 
the top wall, as shown in Fig. 3. This figure also shows 
an auxiliary coordinate s used to present the results, 
which runs along the wall and along the baffle. The 
enclosure contains a grey medium with an emissive 
power equal to 10 W mm2. Calculations were per- 
formed for two different boundary conditions. In the 
first case the boundaries, including the baffle, are 
assumed black, and in the second case the emissivity 
of the walls in 0.8 and the emissivity of the baffle is 
0.6. In both cases, a unity emissive power is considered 
for the walls and for the baffle. 

To check the correctness of the treatment of the 
baffles, preliminary calculations were performed simu- 
lating the whole enclosure depicted in Fig. 3, as well as 
only one half of the enclosure. In this case, a symmetry 
boundary condition was prescribed at x = 0.5 m, from 
y = &0.6 m. These results are not presented here, 
but it was verified that the net heat flux along the 
boundary, including the surface of the baffle, are 
identical in the two cases, demonstrating the correct 
implementation of the baffle treatment. 

Figure 4 shows the predicted evolution of the net 
heat flux along the boundary for a black enclosure 
containing a medium with an absorption coefficient 

s= 1.5 
\ 

/ 

z 
s = 2.4 

s = 0.5 E=o1 

- 

E 
9 %- 

- 

(17) Fig. 3. Geometry of the enclosure studied in test case 1. 
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s (m) 
Fig. 4. Predicted net heat flux (W m-‘) along the boundary of a square black enclosure with one baffle 
containing an emitting-absorbing medium with K = 1 m-’ : (a) discrete ordinates method ; (b) finite volume 

method ; (c) discrete transfer method. 

equal to 1 m-‘. A uniform grid with 10 x 10 control 
volumes was used, and the results of several angular 
discretizations are shown. The S4, S6 and S8 approxi- 
mations were used in the DOM, 2 x 2, 3 x 3 and 5 x 5 
(N,x N,) angles per octant were employed in the 
FVM and 2 x 2,5 x 5 and 10 x 10 directions per octant 
were considered in the DTM. The results show rela- 
tively small differences for the angular discretizations 
selected in the DOM and FVM, larger differences 
between the different discretizations being 2.5 and 
2.0%, respectively. In the DTM the two finer angular 
discretizations yield similar results, but the coarser 
one departs from them, with larger differences of 
about 6.1%. 

Figure 5 shows a comparison of the results obtained 
for the same problem, and the same methods, but 
using a finer grid (20 x 20 control volumes) and finer 
angular discretizations. The results of the zone 
method calculated using 10 x 10 uniform volume 
zones are also plotted, both with and without the 
baffle. The net heat fluxes are larger at the centre of 
the walls and decrease towards the corners. It can be 
seen that the presence of the baffle has a minor influ- 
ence on the heat flux along the bottom wall 
(0 < s < 0.5 m). However, the influence of the baffle 
becomes more important along the west wall, as s 

T 
E 

5.0 

L 4.0 
u 
?j 3.0 
E - DOM-S8 

------ WM - No= N,= 10 
--- DTM-Ne=Nq=10 

----- without baffle 

0.0 0.5 1.0 1.5 2.0 2.5 

s(m) 
Fig. 5. Predicted net heat flux (W m-‘) along the boundary 
of a square black enclosure with one baffle containing an 

emitting-absorbing medium with K = 1 m-‘. 

increases up to 1.5 m, and especially on the top wall 
(1.5 ,< s f 2.0 m), close to the baffle. Since the emiss- 
ive power of the ballle surface is small compared to 
the emissive power of the medium, the presence of the 
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baffle causes a decrease of the net heat flux along the 
boundary. The numerical solutions computed using 
the four different methods are very close to each other. 
In particular, the DTM and ZM solutions are almost 
coincident, while the DOM and FVM solutions yield 
slightly lower net heat fluxes close to the centre of the 
walls, and on the tip of the baffle. 

Additional calculations were performed for other 
values of the absorption coefficient (K = 0.1 and 10 
m-‘), and repeated for the case of grey boundaries. A 
grid with 10 x 10 ctontrol volumes was used in all the 
cases. The S4 approximation was employed in the 
DOM, and the same number of discrete solid angles 

a; 0.8 

ry 

v 0.6 

3 
LL 0.4 

cl 
0.8 

0.6 

0.0 0.5 1.0 1.5 2.0 2.5 

s (m) 

e) 

6.0 

(24) was taken in the FVM (No = 1, N+, = 3) while a 
slightly larger number of directions (32) was used in 
the DTM (No = 2, N, = 2). The results are presented 
in Fig. 6. 

Figure 6 shows that the net heat fluxes increase with 
the absorption coefficient of the medium. The flux 
distribution along the walls is more uniform for larger 
K, but exhibits a sharper drop close to the corners. 
The influence of the baffle is progressively attenuated 
with the increase of the absorption coefficient. In the 
case of grey boundaries, the net heat fluxes are smaller 
than for black boundaries, especially when the absorp- 
tion coefficient of the medium is high. Moreover, for 

8.0 

6.0 4 

0.0 0.5 1.0 1.5 2.0 2.5 

s 0-N 

0 DOM-S4 
0 FVM-N,=l,N,=3 

X DTM-Ne=Nq=2 

- ZM 

Fig. 6. Predicted net heat flux (W m-‘) along the boundary of a square enclosure with one baffle : (a) black 
boundaries, K = 0.1 m-’ ; (b) black boundaries, K = 10 m-’ ; (c) grey boundaries, K = 0.1 m-l ; (d) grey 

boundaries, K = 1 m-’ ; (e) grey boundaries, K = 10 m-‘. 
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grey boundaries a fast variation of the net heat flux 
occurs close to s = 2 m, as a consequence of the 
different emissivities of the wall and surface of the 
baffle. 

A comparison of the numerical solutions obtained 
by the different methods shows that they all predict 
similar evolutions of the net heat fluxes. If the absorp- 
tion coefficient of the medium is small (ic = 0.1 m-‘), 
the DTM generally yields the lowest heat fluxes, both 
for black and grey boundaries, especially on the top 
wall of the enclosure. The results of the remaining 
three methods are close to each other. In the case of 
an absorption coefficient equal to 1 or 10 rn-‘, the 
differences between the solutions of the several 
methods are small. It is worth noting, however, that 
for the higher absorption coefficient the DOM, FVM 
and DTM predictions do not drop as sharply as the 
ZM results close to the corners of the enclosure. 

Although there is a good agreement between the 
numerical solutions of the different methods, the com- 
putational requirements are not the same. The CPU 
time required to obtain the converged solution is simi- 
lar for the DOM and the FVM. The DTM has 
required about five times more CPU time for identical 
spatial and angular discretizations. The ZM is by far 
the most expensive method. The calculations for the 
10 x 10 uniform grid using the zone method require 
eight times more CPU time than corresponding cal- 
culations using the DOM, an 80 x 80 uniform grid 
and the S8 approximation. 

3.2. Two-dimensional square enclosure with three 
baffles 

A two-dimensional square enclosure was also inves- 
tigated in the second test case, but two additional 
baffles were introduced, as shown in Fig. 7. The emiss- 
ive power and the absorption coefficient of the med- 

0.3 m 
- 

_) 

Fig. 7. Geometry of the enclosure studied in test case 2. for5<z~10m:tc=0.25m-‘,T=2000K 

ium are 10 W me2 and 0.1 m-‘, respectively. The 
boundary conditions are the same considered in the 
previous test case. 

A grid with 10 x 10 volume zones was employed in 
the zone method calculations, while 40 x 40 control 
volumes were used in the DOM, FVM and DTM. The 
S8 approximation was used in the DOM, and 10 x 10 
angles per octant were used both in the FVM and 
DTM. The predicted net heat fluxes along the bound- 
ary are plotted in Fig. 8. The coordinate s runs along 
the wall, from the centre of the bottom wall up to the 
centre of the top wall, as depicted in Fig. 7. The 
coordinate z is measured along the baffles, from the 
wall to the tip of the baffles. 

The introduction of the two baffles attached to the 
bottom wall, comparatively to test case 1, causes a 
decrease of the net heat fluxes, especially along the 
bottom wall. Those two baffles divide the bottom wall 
into three regions, and the net heat fluxes exhibit a 
similar distribution in each region, achieving a 
maximum at the centre and decreasing towards the 
edges. The heat fluxes distribution is similar for black 
and grey boundaries. 

All the methods yield similar predictions, although 
the peak of the heat fluxes calculated by the DOM is 
smaller than that computed by the other methods at 
the bottom (s = 0 m) and the top walls (s = 1.75 m). 
Moreover, the predicted evolution along the west wall 
(0.5 < s < 1.5 m) is not as smooth as the distributions 
computed using the FVM, DTM and ZM. This sug- 
gests that the S8 approximation may be responsible 
for the observed behaviour, since it corresponds to a 
coarser angular discretization than that used in the 
FVM and DTM. The computational requirements of 
the different methods are similar to those observed in 
the previous test case. The only difference is that the 
DTM converges in a smaller number of iterations than 
the DOM and the FVM. However, an iteration of the 
DTM takes more time and, overall, it has required 2.5 
times more CPU time to converge than the DOM and 
the FVM. 

3.3. Three-dimensional enclosure 
In the last test case a three-dimensional enclosure 

resembling the combustion chamber of a utility boiler 
was modelled. The enclosure contains five baffles, as 
shown in Fig. 9, which simulate the panels of super- 
heaters that may be suspended from the top of the 
combustion chamber. The temperature and the emiss- 
ivity of the boundaries, including the surface of the 
baffles, were taken as 800 K and 0.65, respectively, 
except at x = 10 m and for 22 < z < 30 m, where the 
temperature was set equal to 1200 K and a black body 
surface was assumed. An emitting-absorbing medium 
was assumed, with the following distributions of tem- 
perature and absorption coefficient : 

forz<Sm:rc=0.20m-‘,T= 1600K 
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Fig. 9. Schematic of the enclosure studied in test case 3. 

forl0<z~2Om:rc=0.20m-‘,T= 1600K 

for20<z<3Om:ic=0.18m-‘,T= 12OOK. 

The calculations were performed using a grid with 
20 x 60 x 60 control volumes, and the inclined walls 
were simulated in a stepwise fashion. An angular dis- 
cretization with NH = N, = 5 was employed both in 
the FVM and DTM calculations, while the S8 
approximation was used in the DOM. We only present 
here the results for these three methods. In fact, the 
code for the calculation of the radiation exchange 
factors has been written only for two-dimensional 
enclosures with obstacles, although there are not any 
theoretical difficulties in the extension to three-dimen- 
sional problems. 

The predicted net heat flux contours for the front, 
side and back walls are shown in Fig. 10. The 
maximum heat fluxes occur at the level where the 
temperature and absorption coefficient of the medium 
are higher, i.e. at the burners level of an actual boiler, 
and decrease progressively towards the top, the bot- 
tom and the vertical edges. The contour of 100 kW 
m-* on the front wall exhibits a wavy shape due to 
the influence of the baffles. The local heat fluxes are 
larger in vertical planes equidistant from the baffles, 
and decrease towards the baffles, as also observed 
in the previous test cases. The contours are almost 
identical regardless of the radiation model. However, 
it may be seen that the contours obtained using the 
DTM are not as smooth as the others, particularly the 
contour of 100 kW m-* on the front and back walls. 
This is not surprising since it has been observed that 
the DTM sometimes produces oscillatory solutions 

[l 11. In this problem the DTM has also required less 
iterations, but about 1.5 times more CPU time to 
attain convergence than the DOM and the FVM. 

4. CONCLUDING REMARKS 

Four radiation models : the zone method, the dis- 
crete transfer, the discrete ordinates, and the finite 
volume method, were applied to the calculation of the 
heat fluxes in two-dimensional enclosures containing 
baffles, i.e. obstacles of zero thickness. Three of the 
models were further applied to the combustion cham- 
ber of an idealized utility boiler with several baffles. 
The modifications required to deal with the baffles 
were described. 

All the methods predict similar evolutions of the 
net heat flux along the boundaries, both for black and 
grey boundaries. The predicted influence of the baffles 
on the distribution of the heat fluxes exhibits the 
expected trends. As far as the computational require- 
ments are concerned, the discrete ordinates and the 
finite volume method converge faster than the discrete 
transfer method, by a factor which has changed 
between 1.5 and 5, depending on the test cases. The 
discrete transfer method may converge in a smaller 
number of iterations, but each iteration requires more 
CPU time. The zone method is by far the most com- 
putational demanding method. 
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