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PARALLELIZATION OF THE DISCRETE
TRANSFER METHOD
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Instituto Superior Técnico, Technical University of Lisbon, Mechanical
Engineering Department, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal

The discrete transfer method was parallelized and applied to the calculation of radiative
heat transfer in 2D and 3D enclosures containing a gray emitting-absorbing and
isotropically scattering medium. Two different parallel strategies were used, the ray domain
decomposition and the spatial domain decomposition. Three test cases were considered, and
the influence of the number of processors, angular and spatial discretizations, absorption
coefficient of the medium and emissivity of the boundaries on the parallel performance was
investigated. It is shown that the ray decomposition is the most efficient method, mainly
because the convergence rate is not influenced by the number of processors.

INTRODUCTION

The discrete transfer method (DTM) [1] has been widely used in the calcula-
tion of radiative heat transfer in combustion chambers, especially when the
simulation of the reactive fluid flow is alsc carried out [2-4]. The computational
requirements of these calculations are quite high, and there is a general consensus
about the benefits of using parallel computing to tackle these kinds of problems.
Furthermore, parallelization techniques may be used together with other accelera-
tion methods, such as the successive overrelaxation, synthetic acceleration, or mesh
rebalance methods used in [5] in the framework of the discrete ordinates method,
or the multigrid method. However, while the parallelization of fluid flow codes has
been widely investigated, only limited attention has been given to the paralleliza-
tion of radiation models [6], despite the impact that parallel computing may have in
this field [7]. Nevertheless, several authors have already addressed the problem of
parallelizing a radiative heat transfer method, such as the zone method [8], the
Monte Carlo [9, 10], the discrete ordinates [11-16], and the finite-volume method
[17].

As far as the DTM is concerned, besides a preliminary work presented by us
[18], we are only aware of another paper addressing its parallelization [19]. But in
[19] the attention was focused on the comparison of algorithms for the calculation
of the radiative properties of the medium, and the application was restricted to a
one-dimensional problem. In the present work an improved version of the code
described in [18] was used and a much more detailed analysis of the parallel
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NOMENCLATURE
E, difference between successive S, speed-up
iterations of the absorbed radiative tom communication time
energy on the wall t, execution time
E, difference between successive L, execution time using p processors
iterations of the incident radiative B extinction coefficient
energy on the wall bs geometric path length within a
E, efficiency control volume
G incident radiation e emissivity
H irradiation onto a surface K absorption coefficient
1 radiation intensity o Stefan-Boltzmann constant
J radiosity o, scattering coefficient
Riter number of iterations required to T optical thickness
achieve convergence ¢ scattering phase function
n, number of iterations required to ® single scattering albedo
achieve convergence using Q solid angle
P processors
N, N, number of grid nodes along x and Subscripts
y directions
Ny, N, number of polar and azimuthal b blackbody value
angles per octant n,n + 1 entry (n) into or exit (n + 1) from a
P number of processors control volume
q radiative heat flux P number of processors
s geometric path length P point P
s unit vector along a given direction w wall

performance was carried out. The calculations were performed in two distributed
memory computers, the Intel iPSC/860 and the IBM SP2, using up to 16 proces-
sors. Although a shared-memory computer would require fewer changes in the
sequential code, massively parallel shared-memory computers are not presently
available. Therefore, the applicability of the proposed parallelization methods
would be limited if a shared-memory computer were used.

The parallelism in the solution of the radiative transfer equation (RTE) may
be achieved using wavelength decomposition, angular or ray decomposition (RDP),
or spatial domain decomposition (DDP). A combination of two or three decompo-
sition methods is also feasible. In the case of gray media, as considered in the
present work, only the last two options are available. The parallelization methods
differ in the way the computational load is distributed among the processors. The
RDP is the most straightforward approach, and it consists in splitting up the total
number of radiation beams into a number of subsets equal to the number of
processors. Every processor integrates the RTE along the directions of the radia-
tion beams across the entire domain. In the DDP the domain is split up into
subdomains, and each of them is assigned to one processor. All the radiation
beams traveling in a subdomain are tracked by the processor assigned to that
subdomain. Although the DDP does not fit the characteristics of the DTM as well
as the RDP, it is a natural choice when the radiative heat transfer calculations are
coupled to the simulation of a reactive fluid flow, since the spatial domain
decomposition is the standard approach in computational fluid dynamics.
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A short overview of the DTM is given in the next section to provide the
background required for the detailed explanation of the parallel implementation
which is presented next. Then, the results are presented and discussed. They
include three test cases consisting of two- and three-dimensional enclosures with
gray emitting-absorbing and isotropically scattering media. The influence of the
number of processors, grid size, angular refinement, absorption coefficient of the
medium, and emissivity of the walls on the parallel performance are investigated
for both parallelization methods. Two different ray splitting strategies in the RDP
are compared. Finally, the main conclusions are summarized.

THE SEQUENTIAL ALGORITHM AND THE
PARALLELIZATION STRATEGIES

The Discrete Transfer Method

The main features of the DTM are described below in order to facilitate the
discussion of the parallelization strategies. A complete description of the method is
given elsewhere [1].

The DTM is based on the numerical solution of the RTE along specified
directions. For a gray emitting-absorbing-scattering medium, as considered in this
article, the RTE may be written as follows:

A il + 2 ("INl ) dO (1)
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Equation (1) is a statement of the principle of conservation of energy applied to a
pencil of radiation traveling along direction s. In this equation I is the radiation
intensity, s is the coordinate measured along the direction s, k is the absorption
coefficient of the medium, o, is the scattering coefficient, B is the extinction
coefficient, and the subscript b refers to a blackbody. The ratio ¢ (s’,s)/4m
represents the probability that radiation propagating in the direction s’ and
confined within the solid angle d()’ is scattered through the angle (s’,s) into the
direction s confined within the solid angle dQ). The absorption, scattering and
extinction coefficients are related to the single scattering albedo as follows:

S
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K + o, B 2
In the DTM the physical domain is divided into control volumes. The
temperature and the radiative properties of the medium are taken as constant in
each of them. For all the control volumes adjacent to the boundary, the central
points of the faces of the control volumes coincident to the boundary are deter-
mined. Let P be one such point. The hemisphere centered at P is discretized into
a given number of solid angles. Each solid angle defines a direction along which
the RTE is solved.
Hence, given a point P at the center of a cell face on the boundary, a
radiation beam is fired from P for each of the directions selected above. The path
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of a radiation beam is followed until it hits another boundary. Let Q, be the
impingement point. Although, in general, Q; is not the central point of the
boundary cell, it is assumed that the radiation intensity at Q, and at the central
point of the cell which contains Q; are equal. This radiation intensity is either
known from the boundary conditions or calculated based on the values of the
previous iteration. Then, starting from Q;, the path of the beam is followed back to
the origin (point P), and the RTE is integrated analytically along this path, yielding
(1]

By =Lg P o [(1 - ), + (4_0;)[%’(8')¢(s’,s) dQ'|(1 — ™) (3)
0

In this equation the subscripts #» and n + 1 denote the points at the entry into or
at the exit from a control volume, respectively, and &s is the distance between
those two points. In the case of isotropic scattering, the integral in the in-scattering
term is equal to the incident radiation:

[ s d(s',s) dQ = G 4)
0

The incident radiation is related to the radiation source (or sink) in a control
volume by means of the conservation of radiative energy equation:

Vig=«k(4oT* - G) 5)

The radiation source (or sink) in a control volume is the integral of the
divergence of the radiative heat flux over the control volume. It is obtained from
the sum of the contributions of all the radiation beams which cross that control
volume. This source may be calculated only after a converged solution has been
achieved, provided that the temperature of the medium is prescribed and there is
no scattering. If a radiative heat source rather than the temperature field is
prescribed, the temperature field must be determined from the simultaneous
solution of the energy conservation equation and the RTE. This may be accom-
plished as described in [20].

The incident radiative flux at point P, that is, the irradiation, H,, is
calculated by adding the contributions due to all the radiation beams that reach
point P. The solution of the RTE requires the specification of the boundary
conditions. If the wall temperature, T, is prescribed, the boundary condition for
gray diffuse boundary surfaces may be written as follows:

Ip=¢,0T} + (1 - ¢g,)Hp (6

where J, is the radiosity at point P, ¢, is the emissivity of the wall, and o is the
Stefan-Boltzmann constant. Other boundary conditions may be treated as de-
scribed in [1].

The calculations described above are performed sequentially for all the cell
faces on the boundary of the computational domain. The method is iterative,
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unless &, = 1, because the radiation intensities leaving the points Q, are not
known a priori. They are guessed in the first iteration, and then computed from the
values of the previous iteration, as stated above.

The convergence criterion used in this work demands that the difference
between two successive iterations of the total radiative energy absorbed (or
incident) on the boundary be smaller than a specified tolerance. If a radiative heat
source is prescribed, in addition to the previous criterion, it is also required that
the sum over all the control volumes of the difference (or the maximum difference)
between the prescribed and the computed heat source decreases below a specified
tolerance. Moreover, the sum over all the control volumes (or the maximum)
temperature difference between successive iterations must be smaller than a
specified tolerance.

Parallelization of the Discrete Transfer Method

Ray decomposition parallelization (RDP). In the RDP, the total number
of radiation beams fired from the boundary of the domain is split into a number of
subsets equal to the number of processors, and each subset is assigned to a
processor. Each processor performs the calculations for the whole domain but
deals only with its subset of radiation beams. This approach may be implemented
in different ways depending on how the subsets of radiation beams are selected.

The strategy employed in the present work consists of the division of every
boundary of the enclosure into a number of subregions equal to the number of
processors, each subregion being assigned to a different processor. Two different
methods were used to define these subregions. In method 1 the boundary is divided
into equal subregions. If the division is performed along the x direction, denoted
by N, the number of grid nodes along that direction and by p the total number of
processors, and assuming that N, is a multiple of p, then the ith processor treats
all the radiation beams fired from the boundary cell N, *(i — 1)/p + 1 to the
boundary cell N, *i/p. All the radiation beams fired from the boundary cells in a
subregion are treated by the processor assigned to that subregion. This method is
illustrated in Figure 1a for a 2D boundary (8 X 8 boundary cells) of a 3D problem
and assuming that 4 processors are used.

Method 1 may yield load imbalance among the processors, as will be shown in
the results section of this article. It is worth emphasizing that this imbalance is due
only to the way the radiation beams are split among the processors, and it is
independent of the machine used. Another method was implemented in an attempt
to reduce the load imbalance. In this second method the subregions are defined
according to a chessboardlike pattern. The radiation beams fired from neighboring
cells are assigned sequentially to different processors. Figure 1b illustrates this
method for the example considered above.

The restriction of methods 1 and 2 to a 2D problem mapped using a uniform
grid with 8 X 8 control volumes and 4 processors is shown in Figure 2. The path of
all the radiation beams treated by processor 1 are drawn in this figure for the case
N; =N, =1, N, and N, standing for the number of discrete polar and azimuthal
angles per octant, respectively.
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Figure 1. Splitting of the radiation beams among the processors in the
ray decomposition parallelization method in the case of a 2D boundary
(8 X 8 boundary cells) of a 3D problem and for 4 processors: (a) method 1;
(b) method 2.

It has been assumed, for simplicity reasons, that the number of cells per
boundary is a multiple of the number of processors. If this is not the case, there is
a straightforward extension. In fact, it would be easy to split up the total number of
radiation beams among the various processors regardless of the boundary cells.
Since a total of N, , #(4* N, = N,) radiation beams are fired from each one of the
four boundaries in 2D problems, N, , being N, or N, depending on the boundary,
then each processor would deal with N, , x(4x N, * N,)/p radiation beams.

In distributed memory platforms each processor has access to its own
memory, but the access to a nonlocal memory requires message passing via
interconnection networks. The communication among processors in the RDP is
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Figure 2. Path of all the radiation beams fired from processor 1 in the ray
decomposition parallelization method in the case of a 2D problem (8 X 8 control
volumes), N, = N, = 1 and 4 processors: (a) method 1; (b) method 2.
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restricted to global operations, e.g., a global sum. These global operations were
performed using calls specific to the message-passing library of each machine.

During each iteration the walls of the enclosure are treated sequentially, and
each processor deals with its own subregion. As an example, the bottom wall of the
2D enclosure shown in Figure 2 is treated simultaneously by all the processors.
Then, the top, right, and left walls are treated similarly. After all the processors
have finished the calculation of the incident fluxes on a wall, e.g., the bottom wall,
for all the boundary cells assigned to them, they are able to compute the radiosity
on those boundary cells using the most updated data. Then, every processor
broadcasts the radiosities that have just been computed for their boundary cells.
This is needed because the radiation beams fired from the boundary cells assigned
to a processor do not necessarily hit, and in most cases will not hit, a cell that
belongs to its own subregion. For example, the radiation beams fired by processor 1
in the positive x direction from the bottom boundary of the enclosure displayed in
Figure 2a hit boundary cells assigned to processor 4. Since different processors
have independent memories, every processor must communicate to all the others
its most updated radiosities, because these radiosities are needed to calculate the
radiation intensities leaving the walls. This data exchange occurs four times per
iteration, following the treatment of each wall. The extension to the 3D case is
straightforward.

Due to this frequent exchange of data, the number of iterations required to
achieve convergence does not increase with the number of processors, as will be
shown in the next section. Moreover, it will also be shown that for the computers
used in this work, the communication time is small compared to the total time. As
a consequence, good parallelization efficiencies are achievable. On the other hand,
if the radiosities were exchanged only once per iteration, the calculations per-
formed during one iteration would always be based on the radiosities calculated in
the previous iteration. This would yield an increase of the number of iterations
required to achieve convergence, with a consequent decrease of the efficiency.

The solution algorithm in each processor may be summarized as follows.

1. Initialize the data, such as grid data, angular discretization, boundary

conditions, temperature, absorption and scattering coefficients of the

medium, tolerance for the convergence criterion, number of processors.

Set the iteration counter to 1.

Loop over all the boundaries, and for each boundary perform steps 3-5.

3. Set to zero the absolute value of the difference between successive
iterations of the incident, E;, and/or absorbed, E,, energy on the wall
boundary.

4. Loop over the boundary cells assigned to the processor; perform the
following operations for each boundary cell.

(a) Set the irradiation, Hp, on the boundary cell face to zero.

(b) Loop over all the radiation beams fired from the central point of the
cell face on the boundary; perform the following operations for each
of them.

(i) Track the path of the radiation beam until it hits an opposite
boundary.

Lo



144 P. J. NOVO ET AL.

(it) Get the radiosity at the hitting point and determine the radiation
intensity of the radiation beams leaving the wall.

(iii) Integrate the RTE from the hitting point back to the firing point
and determine the incident radiation at the firing point. Also
compute and accumulate the contribution of the crossed control
volumes to the radiation source of the energy equation.

(iv) Add the contribution of the radiation beam to the irradiation H,.

(c) Apply the boundary conditions to determine the radiosity J,,.
(d) Update E; and E, by adding the contribution of the cell face.

5. Broadcast the radiosities at the boundary cells treated in step 4, as well as
the values E; and E,.

6. If a radiative heat source is prescribed, broadcast the computed radiation
source of the energy equation. Then, update the temperature field as
reported in [20], and calculate the quantities required for the convergence
criterion.

7. In the case of scattering media the incident radiation field is updated.

8. Check whether the convergence criterion is satisfied. If not, increase the
iteration counter by one and return to step 2. Otherwise, print the results
and stop.

In step 6 of the solution algorithm the temperature field may be updated in
two different ways. In the first method, all the processors update the temperature
field for the whole domain. In the second method, the domain is divided into
subdomains and each processor updates the temperature field only in its own
subdomain, as in the spatial domain decomposition parallelization strategy. Then, a
global operation is needed such that all the processors know the temperature field
in the whole domain. These two methods are also applicable to the update of the
incident radiation field in step 7 of the solution algorithm. The second method was
selected, since it was found that it is more efficient for the problems studied and
the computers used in this work.

Spatial domain decomposition parallelization (DDP). In the DDP the
domain is split up into a number of subdomains equal to the number of processors,
and each subdomain is assigned to one processor. Each processor performs all the
calculations for its subdomain. Radiation beams are fired both from the walls of
the enclosure and from the boundary cells on the virtual boundaries, i.e., bound-
aries between neighboring processors. This parallelization strategy is illustrated in
Figure 3, which shows a 2D domain mapped using a uniform grid with 8 X 8
control volumes, and one radiation beam fired per octant. Assuming that 4
processors are used, the path of all the radiation beams fired from the bottom wall
and treated by processor 1 are drawn in Figure 3.

Knowledge of the radiation intensities of the radiation beams leaving the
boundaries (walls and virtual boundaries) is required to integrate the RTE along
the path of the beams. Therefore, the radiation intensities along the virtual
boundaries are exchanged between neighboring processors at the end of each
iteration.

To clarify this issue, an example is illustrated in Figure 4. It shows a domain
split up into two subdomains, each assigned to one processor. Two radiation beams



PARALLELIZATION OF THE DISCRETE TRANSFER METHOD 145

Processor Processor

A

: )& Figure 3. The spatial domain decomposi-
: : ; tion parallelization method.

are fired per octant (N, = 2, N = 1). At iteration number n — 1, when processor
2 is dealing with cell face B, on the virtual boundary, two radiation beams per
octant are fired from the central point of cell face B. These radiation beams, Bl to
B4, are tracked until they hit the boundaries of the subdomain treated by processor
2. These boundaries coincide with the boundaries of the enclosure, where the
radiation intensity is known or guessed from the previous iteration. The RTE is
integrated back to the central point of cell face B, along the path of each one of
the four rays, allowing calculation of the radiation intensity incident on cell face B
for each of the rays. These radiation intensities at the virtual boundaries are stored
in an array, hereafter referred to as the RIVB array.

At iteration number n, when processor 1 is dealing with cell face A, two
radiation beams per octant are fired from the central point of cell face A. These
radiation beams, Al to A4, are tracked until they hit the boundaries of the
subdomain treated by processor 1. One of them, Al, hits cell face B, located on the

Figure 4. Treatment of the virtual
boundaries in the spatial domain decom-
position parallelization method.
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virtual boundary between processors 1 and 2. To integrate the RTE from the
hitting point to the central point of cell face A, the radiation intensity leaving the
point where ray Al hit cell face B must be known or guessed. This radiation
intensity is taken as the radiation intensity of ray B3 arriving at the central point of
cell face B in iteration n — 1 (among the rays that hit cell face B, B3 is the ray with
a direction closest to that of ray A1). This radiation intensity has been stored in the
array RIVB, as mentioned above. This array, which stores the radiation intensities
of all the radiation beams arriving at the virtual boundaries of a processor, was
transferred from processor 2 to processor 1 at the end of iteration n — 1.
Therefore, the radiation intensity leaving cell face B and required by processor 1 to
perform the calculations for ray Al in iteration » can be retrieved from that array.
This retrieval operation is a time-consuming task that is not required in the case of
a single processor, and therefore it has an impact on the parallel performance, as
will be shown in the results section.

The direction of radiation transport may change at interprocessor bound-
aries, but this possible distortion can be reduced as much as required by refining
the angular discretization. An angular discretization refinement study should be
carried out in the same way as grid refinement studies are performed, to ensure
that this problem is overcome. This study is particularly important in the case of
optically thin media with localized heat sources.

During the first iteration, the radiation intensities at the virtual boundaries
were assumed to be equal to the radiation intensities at the boundaries of the
enclosure. This assumption may influence the convergence rate and will be further
investigated in the future.

The solution algorithm in each processor may be summarized as follows.

1. As in the RDP.

2. Loop over all the boundaries (walls or interfaces between neighboring
processors), and for each boundary perform steps 3-5.

3. If part of the boundary is a wall, set to zero the absolute value of the
difference between successive iterations of the incident, E;, and/or ab-
sorbed, E,, energy on the wall.

4. Loop over all the boundary cells; perform the following operations for
each boundary cell.

(a) Set the incident radiation on the boundary cell face to zero.

(b) Loop over all the radiation beams fired from the central point of the
cell face on the boundary; perform the following operations for each
of them.

(i) Track the path of the radiation beam until it hits an opposite
boundary (wall or virtual boundary).

(it) Determine the radiation intensity of the radiation beams leaving
that boundary either from the radiosity, in the case the hitting
point is a wall, or from the array RIVB, if the hitting point is a
virtual boundary.

(iii) As in the RDP.

(iv) Do either as in the RDP if the firing point is a wall, or store the
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incident radiation in the array RIVB if the firing point is a virtual
boundary.

(c,d) Do as in the RDP if the firing point is a wall; otherwise, skip these

items.

Exchange the array RIVB between neighboring processors.

Broadcast E; and E,.

7. If a radiative heat source is prescribed, update the temperature field as
reported in [20]. Calculate the quantities required for the convergence
criterion and broadcast them.

8. In the case of scattering media the incident radiation field is updated.

9. Check whether the convergence criterion is satisfied. If not, increase the
iteration counter by one and return to step 2. Otherwise, print the results
and stop.

A W

RESULTS AND DISCUSSION

The parallel strategies described in the previous section were applied to three
test cases, and the results obtained are presented and discussed below. Most
computations were performed on an Intel iPSC/860 using 1, 2, 4, and 16 proces-
sors, and using method 1 to split the rays among the processors in the RDP. In the
last test case an IBM SP2 was used to show the generality of the parallelization
methods, and the two ray splitting methods used in the RDP were compared. The
parallel performance is evaluated by means of the efficiency and speed-up. The
speed-up is defined as S, = 1,/t,, where ¢, and ¢, are the wall clock execution
time on 1 and p processors, respectively. The speed-up is closely related to the
efficiency of the parallel implementation, defined as E, = S, /p. The efficiency per
iteration is also important in the analysis of the results. It is defined as E, * n, /n;,
where n; and n, are the number of iterations required to achieve convergence
using 1 and p processors, respectively.

Square Domain with Prescribed Medium Temperature

In the first test case a two-dimensional square enclosure with cold, gray walls
was studied. The enclosure contains a gray nonscattering medium maintained at an
emissive power of unity. Preliminary calculations were performed for black walls
and the results were compared with the analytical solution [21]. It was verified that
the parallel and the sequential codes yield similar results, which are in close
agreement with the analytical solution. However, these results are not presented
here because the solution method is not iterative if the walls are black and their
temperature is known. To examine the parallel performance of the algorithm we
have considered gray walls, since the algorithm is iterative in this case. Although no
analytical solution is available in the case of gray walls, the numerical solutions
computed using the parallel code and a sequential one, which was thoroughly
tested in the past, were systematically compared. It was found that the numerical
solutions are identical.
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The standard calculations were performed using a discretization with 16 solid
angles per octant (N, =4, N, =4), a grid with 128 X 128 control volumes, a
medium with a unity optical thickness, and an enclosure with gray boundaries and
an emissivity equal to 0.4. In the results presented below, one of these five
parameters (number of processors, angular discretization, grid size, optical thick-
ness, and emissivity of the boundaries) was varied, while the others were kept
unchanged.

Figure 5 shows the efficiency, the speed-up, the number of iterations required
to achieve convergence, n;,,, and the ratio of the communication time to the total
elapsed time, ¢,,,/t,, as a function of the number of processors, p. The efficiency
decreases with p, as expected, but the decrease is relatively slow for the RDP,
where E, = 91.3% for p = 16, while it is quite fast for the DDP, where E, = 26.9%
for p = 16.

The significant difference in the efficiency between the two different parallel
strategies is explained, to some extent, by the evolution of the number of iterations
with p. In the RDP n,,, is independent of p, but in the DDP n,,, increases
markedly with p. In the last case, the calculations performed in a subdomain at the
nth iteration require knowledge of the radiative intensities at the boundaries of
that subdomain. In the case of virtual boundaries, these radiation intensities have
been calculated at the neighboring subdomains during the (n — 1)th iteration,
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Figure 5. Influence of the number of processors on efficiency (a), speed-up (b),
number of iterations (c), and ratio of communication to execution time (d) for
test case 1.
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stored in array RIVB, and transferred to the subdomain under consideration just
before the end of that iteration, in step 5 of the solution algorithm. These local
communications, inherent to the DDP strategy, prevent the information from
traveling beyond the boundaries of a subdomain in one iteration, in contrast to the
RDP, where the information is able to travel through the whole domain in one
iteration. As a consequence, the DDP yields an increase of n,, with p, in the
same way as the DDP commonly used in computational fluid dynamics (CFD),
although in radiation problems the percentage of increase of the number of
iterations with p is larger than in CFD, as discussed in [22].

If the increase of ny,, with p were the only reason for the decrease of E,
with p, then the efficiency per iteration would remain constant regardless of the
number of processors. However, the efficiency per iteration decreases with p, as
shown in Figure 5a. The time required to transfer data among the processors
increases with p, causing a decrease of the efficiency per iteration, but it has a
minor role, as shown in Figure 5d. In fact, ¢,,, /t, does not exceed 0.6%. Therefore,
the cause for the decrease of the efficiency with p lies elsewhere, as explained
below.

In the RDP the efficiency is 99.9% for p = 2, and the communication time is
the only reason why E, is smaller than 100%. However, if p = 4, then E, = 93.3%.
In this case each wall of the enclosure is split into four regions, and the radiation
beams fired from each of them are assigned to a different processor. The computa-
tional load associated to tracking the radiation beams and applying Eq. (3) along
their paths depends on the number of cells crossed. Hence, the computational load
for the two regions close to the corners is different from the computational load. of
the two central subregions. This is illustrated in Figure 6, which shows the total
time required to perform the calculations for all the radiation beams fired from
each region. The processors assigned to the corner regions have a lower computa-
tional load and must wait until the others have finished their calculations. Figure 5
shows that this load imbalance, hereafter referred to as the RDP load imbalance,
also occurs for p = 16, but not for p = 2, for symmetry reasons. This explains why
the efficiency is very close to 100% for p = 2, but decreases for p = 4 and p = 16.
It was found that the RDP load imbalance is independent of the spatial and
angular discretizations.

In the DDP the efficiency per iteration also decreases with p, and it is
smaller than in the RDP. When the number of processors is increased, the number
of radiation beams fired from the boundary of each processor is smaller, as well as
the distance traveled by each ray until it hits an opposite boundary. Indeed, it was
verified that the computational load required to track the radiation beams and to
compute the radiation intensities via Eq. (3) is proportional to the number of
control volumes per subdomain. However, there is also a computational load
associated to the storage and retrieval of radiation intensities in the array RIVB.
The computational load of these additional operations is proportional to the
number of cell faces on the boundary of a subdomain. Therefore, the role of these
additional operations increases with p, justifying the corresponding decrease of
efficiency per iteration.

The influence of grid size on parallel performance is shown in Figure 7. In
both parallelization strategies, and for a fixed number of processors, the number of
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Figure 6. Distribution of computational load among the processors
in the RDP for test case 1.

iterations is independent of the grid size, and the ratio ¢, /t, decreases with grid
size. Although this ratio is again small, it explains the small increase of the
efficiency with p observed in the RDP, since the RDP load imbalance is not
influenced by grid size. In the DDP the ratio ¢, /%, explains only in part the
observed increase of efficiency with grid size. For example, if p = 16 we have
B, = 21.3% for the coarser grid and E, = 26.9% for the finer one, that is, E,
increases 5.6%. The efficiency per iteration increases even more. To explain this
evolution fully it is necessary to take into account the additional operations in the
array RIVB. As stated above, the computational load of these operations is
proportional to the number of cell faces on the boundary of a subdomain, which
increases linearly with grid size. But the computational load of the calculations is
proportional to the number of control volumes in a subdomain, which increases
quadratically with grid size (N, = N,). Therefore, the role of the additional storage
and retrieve operations is attenuated with grid refinement, justifying the observed
increase in efficiency.

Figure 8 shows the influence of angular discretization on parallel perfor-
mance. It can be seen that 7, is also independent of the angular refinement for
both parallelization methods. Again, the communication time is very small com-
pared to the execution time. However the ratio t,,/t, exhibits different trends
according to the parallelization approach. In fact, the computation time is propor-
tional to the number of radiation beams fired per boundary cell. In the RDP the
communications appear in the broadcast operations in step 5 of the solution
algorithm, and the time of those operations is independent of the angular dis-
cretization. Therefore, t,,/t, decreases for finer angular discretizations. In the
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DDP the communications are associated with the local data transfer in step 5 of
the solution algorithm, and with the broadcast operations in step 6. The time spent
in the former task is proportional to the number of radiation beams fired per
boundary cell, while the time of the last task is independent of the angular
discretization. Since the former task is more time consuming, it turns out that
tem/t, 18 weakly dependent on N, and N,.

The efficiency of the RDP increases slightly with N, * N,, due to the
corresponding decrease of ¢, /t,. The efficiency of the DDP exhibits more
irregular behavior. In fact, it should not be influenced by the operations in the
array RIVB, because the time involved both in such operations and in the solution
of the RTE is proportional to N, * N,. Therefore, the minor role of ¢,,, /¢, suggests
a negligible dependence of the efficiency on the angular discretization. Figure 8
shows that this is not so, especially when N, = N, increases from 4 to 6. It is
believed that the explanation lies on the cache effect. The efficiencies are deter-
mined on the basis of the execution time in one processor. If more than one
processor is used, the size of the arrays diminishes accordingly, and the efficiencies
may be higher than expected if the cache is used more efficiently (i.e., the arrays fit
in the cache) for p processors than for one processor. This is what has been
observed for p = 4 or p = 16, yielding a superlinear speed-up per iteration when
p=4
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Figure 7. Influence of grid size on efficiency (a), efficiency per iteration (b),
number of iterations (c), and ratio of communication to execution time (d) for
test case 1.
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Figure 8. Influence of angular discretization on efficiency (a), efficiency per
iteration (), number of iterations (c), and ratio of communication to execution
time (d) for test case 1.

The optical thickness of the medium, 7, does not influence the efficiency in
the RDP, as shown in Figure 9. In fact, the ratio ¢, /¢, is independent of 7, and
the number of iterations, although dependent on , exhibits the same dependence
regardless of the number of processors. The evolution of n;, with 7 may be
understood by examining Eq. (3) and noticing that o = 0. If 7 increases, the
second term on the right-hand side of the equation becomes larger compared to
the first term. Since the temperature of the medium is prescribed in this test case,
this means that the term whose value is known a priori becomes larger compared
with the term that changes during the course of the iterative procedure. Hence,
n,., decreases as shown in Figure 9c. In the DDP there is a marked increase of
efficiency with 7. The ratio ¢,,,/t, is again small and independent of 7, and n,,,
decreases with 7. When 7 increases from 0.1 to 10, n;,, drops from 9 to 4if p = 1,
and from 35 to 5 if p = 16. Therefore, when 7 increases, the number of iterations
is less influenced by the number of processors, yielding higher efficiencies. This is
because in optically thicker media the radiation is a more localized phenomenon.
Therefore, in the DDP strategy the number of iterations is less penalized by the
increase in the number of processors. The efficiency per iteration is weakly
dependent on 7.

The influence of the emissivity of the boundary, &, is displayed in Figure 10.
The ratio ¢,,,/t,, not shown in the figure, is small and independent of ¢,, while
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for test case 1.

n,., decreases with g,. The efficiency is independent of &, if the RDP method is
used, as explained above for the influence of 7. But now the efficiency is also
weakly dependent on ¢, if the DDP is employed. This is due to the ratio of »
using p processors to n

iter

using one processor, which is approximately indepen-
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Figure 10. Influence of emissivity of the walls on efficiency (a) and number of
iterations (b) for test case 1.
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Square Domain with a Prescribed Volumetric Heat Source

A two-dimensional square enclosure with cold black walls and a prescribed
volumetric heat source (1 W/m?) was selected as a second test case. The medium
does not scatter. As in the previous problem, the numerical solutions obtained
using the parallel code were systematically compared with those calculated using
the sequential code to check the correctness of the parallel code. The standard
calculations were carried out using N, = N, = 4, a grid with 128 X 128 control
volumes, and an optical thickness of unity.

The influence of the number of processors on parallel performance is shown
in Figure 11. The efficiency decreases with p for both parallelization strategies, but
the efficiency of the DDP method is consistently higher than for the previous
problem. This is related to the number of iterations required to achieve conver-
gence. Figure 11c¢ shows that n,,. increases by a factor smaller than 2 as p
increases from 1 to 16. In the previous problem this factor was about 3. Since the
increase of n,,, is smaller in the present case, the efficiency is higher. The
efficiency per iteration behaves as explained in the former test case. The reasons
given in that test case concerning the time required to store and retrieve data in
array RIVB still hold. The ratio ¢,,, /¢, increases with p, especially if the RDP is
used. In this case, although the ratio remains small, it is much higher than that
observed in the first test case. This is due to the global communication of the 2D
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Figure 11. Influence of the number of processors on efficiency (a), speed-up
(b), number of iterations (c), and ratio of communication to execution time (d)
for test case 2.
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array of radiation sources of the energy equation in step 6 of the solution
algorithm, which was not needed in that problem.

Figures 12 and 13 show the influence of the spatial and angular discretiza-
tions on the parallel performance. The evolutions are very similar to those
described in the previous test case, as well as the evolutions of n;,, and ¢,,,/¢,, not
displayed here. The reader is referred to the explanations given there for the
interpretation of these results.

Finally, the evolution of E, and ny, with 7 is shown in Figure 14. The
efficiency is approximately independent of 7 in the RDP, and increases with 7 in
the DDP, as already observed in the first test case. The ratio ¢, /¢, remains
independent of 7, and too small to play a relevant role. However, contrary to the
previous problem, now r,,, increases with 7. In the present problem the tempera-
ture field is not prescribed, and therefore I, is calculated iteratively during the
course of the solution algorithm via the energy equation. The second term on the
right-hand side of Eq. (3) becomes dominant as 7 increases, justifying the increase
of n., with 7. But the key issue is that in the DDP the ratio of n,,, using p
processors to n;,, using one processor decreases if T increases, as in test case 1
(e.g., if 7= 0.1, then n;,, = 9 for p = 1 and n,;,,, = 20 for p = 16, while if 7 = 10
then ny,, = 337 for p = 1 and n,,, = 414 for p = 16). This is why the efficiency
exhibits the same dependence on the optical thickness in both problems, despite
the opposite evolutions of n
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Figure 14. Influence of optical thickness on efficiency (a) and number of
iterations (b) for test case 2.

Three-Dimensional Rectangular Enclosure with a Prescribed
Volumetric Heat Source

The idealized furnace studied in [23] constitutes the last test problem. It is a
three-dimensional rectangular enclosure (4.0 X 2.0 X 2.0 m®) containing an emit-
ting, absorbing, and isotropically scattering medium. The emissivity of the four side
walls (4.0 X 2.0 m? each) is 0.70, and the temperature is 900 K. The emissivities of
the firing-end and exit-end walls are 0.86 and 0.70, respectively, and the corre-
sponding wall temperatures are 1,200 K and 400 K, respectively. A uniform
volumetric heat source equal to 5.0 kW /m® is prescribed. The predicted results
closely follow those reported in [23], and it was checked that they are independent
of the number of processors for both parallelization strategies. The calculations
were carried out using 64 X 64 X 64 control volumes and an angular discretization
with N, = N, = 4.

Figure 15 shows the results obtained for k = 0.5 m™~! and o, = 0. In the case
of 16 processors, two different partitions were considered in the DDP: 4 X 2 X 2
and 4 X 4 X 1. The former partition is more efficient than the latter, as a result of
the faster convergence. The smaller ratio ¢, /¢, also contributes to the higher
efficiency of the partition 4 X 2 X 2, but it plays a minor role due to the low values
of that ratio. The evolutions of the efficiency, speed-up, n;,,, and ¢, /t, for both
DDP and RDP closely follow the trends observed for the previous two-dimensional
test problem. Despite the different dimension of the problems (2D versus 3D) and
the different computers used in the calculations (Intel iPSC/860 and IBM SP2),
the efficiencies obtained for the two problems are relatively close to each other for
both the RDP and the DDP with a partition 4 X 2 X 2. In the DDP this is due
mainly to the similar variation of n;,, with p in the two problems (see Figures 11c
and 15¢). In the RDP this is due mainly to the load imbalance that persists for 3D
problems. The efficiency obtained for the RDP using 16 processors is a little
smaller than in the previous problem, while the ratio ¢, /¢, is about two times
higher. This is explained by the higher ratio of the calculation to communication
time in the IBM than in the Intel. This is hardly noticed in the other cases, where
the ratio ¢, /¢, is too small.
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Figure 15. Influence of the number of processors on efficiency (a), speed-up
(b), number of iterations (c), and ratio of communication to execution time (d)
for test case 3 without scattering. In the DDP with 16 processors the results of
two different partitions are shown: 4 X 4 X 1 and 4 X 2 X 2.

Further calculations were carried out for k = 0.15 m™' and o, = 0.35 m™'.
The 4 X 2 X 2 partition was selected for the DDP. The results, shown in Figure 16,
reveal that for a fixed number of processors n;,, has increased compared to the
nonscattering case, as expected. In the DDP the ratio of n,,, using p processors to
ny.. using one processor is slightly higher in the present scattering case. This
implies that the efficiency is slightly lower, since ¢, /f, remains very small.
However, the efficiency per iteration has increased a little due to the additional
calculations associated with step 8 of the solution algorithm. In the RDP the
efficiency is similar in the two cases, but marginally smaller for the scattering
medium, as a result of the higher ¢, /¢, ratio. This higher ratio is due to the global
communication of the incident radiation field in step 7 of the solution algorithm.

Figure 16 shows also the results obtained using method 2 for splitting the
radiation beams among the processors in the RDP. In this problem method 2
significantly reduces the load imbalance, as revealed by Figure 17, which represents
the distribution of the computational load among the processors for both methods.
Therefore, better efficiency is obtained. Although method 2 is more likely to result
in a better load balance than method 1, in a general case it is not guaranteed to be
so. An optimum load balance might be achieved by introducing a preprocessing
step at the expense of highet algorithmic complexity, but this is outside the scope
of the present work.
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Figure 16. Influence of the number of processors on efficiency (a), efficiency per
iteration (), number of iterations (c), and ratio of communication to execution time
(d) for test case 3 with isotropic scattering.

Some of the parallelization issues used in this study may be applied to other
methods for the solution of the RTE. In particular, some ideas used in the present
work were also used in the parallelization of the discrete ordinates method (DOM)
reported in [15, 16]; e.g., the DDP technique developed for the DTM was used in a
very similar way in the DOM.

CONCLUSIONS

The DTM was parallelized using two different methods, the RDP and the
DDP. In the first method each processor performs calculations for the whole
domain and for a subset of the total number of rays. In the second case, the
domain is split into subdomains and each processor performs the calculations for
all the rays within its own subdomain. Two- and three-dimensional enclosures
containing emitting-absorbing and isotropically scattering media were studied,
either with a prescribed medium temperature or with a prescribed volumetric heat
source. The calculations were performed on an Intel iPSC /860 and on an IBM SP2
using up to 16 processors. From the results obtained, the following conclusions may
be drawn.

1. The efficiency decreases with the increase of p for both parallelization
strategies. But while high efficiencies, generally above 90%, are achieved
using the RDP, the efficiency of the DDP is low, often below 50%. The
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Figure 17. Distribution of computational load among the
processors in the RDP for test case 3: (a) method 1; (b)
method 2.

efficiency of the DDP is limited by the increase of the number of
iterations with p. This problem does not occur with the RDP, where the
convergence rate is independent of p.

. The efficiency per iteration also decreases with increase of p. For the
RDP this is due to a load imbalance arising from the partition of the
radiation beams among the processors. For the DDP this is due to the
additional operations required to store and retrieve the radiation intensi-
ties at the virtual boundaries between neighboring processors.
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3. Efficiency increases with grid size. For the RDP this is explained by the
corresponding decrease of ¢.,,/t,. For the DDP, besides the decrease of
t../1., the role of the storage and retrieve operations also decreases with
grid size.

4. For the RDP the efficiency increases with the refinement of the angular
discretization, as a result of the decrease of ¢, /t,. For the DDP the
efficiency also changes, but the reason presumably lies in the role played
by the cache effect.

5. The optical thickness of the medium has a negligible influence on the
efficiency of the RDP. However, for the DDP there is a significant
increase of efficiency with the optical thickness associated with the conver-
gence rate of the iterative procedure. The emissivity of the boundaries has
a negligible influence on the efficiency for the prescribed temperature
case and for both parallelization methods.
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