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This paper presents numerical predictions of steady, two-dimensio-
nal, laminar flow of an incompressible fluid over obstacles mounted
in closed channels. Results of the flow predictions are compared
with velocity measurements obtained by means of laser-Doppler
anemometry.The main objective of this paper was to compare the
performance of different numerical schemes employed for the dis-
cretization of the convective terms in the differential equations for
two-dimensional laminar flow. The upwind, hybrid central/upwind,
power law/upwind, quadratic upstream weighted and hybrid
central/skewed upwind finite difference schemes were compared
with each other and with corresponding experimental data of the
velocity field.The flow around two obstacles with different lengths
was considered: a thin fence and an obstacle of finite exteniion
in the flow direction. For each of the obstacles, three blockage ratios
were investigated. Conclusions are drawn from the six different flow
fields predicted with the schemes and it is shown that the quadratie
upstream weighted scheme proved to be the most advantageous
regarding accuracy against computing time and storage space. For
one of the cases investigated, however, this scheme produced 'wig-
gles' in the solution field,

Keywords: laser-Doppler anemometer, laminar flow, finite differ-
ences

There are many ways to classify incompressible fluid with the reduced computational capabilities that were
flows occuring in various fields of engineering. For com- available andf or were introduced 1o allow analytical
putational purposes, it is common to classify ffows as: treatments of flows. In recent years, advances in numeri-
o parabolic fl.ows funy described by a set of parabolic :,l-'"":lt"to"es 

for solutions of partial differential equa-

partial differential equations, the so-caled ffi;;;; n:-1f:?*llj3"t"jll:::*,1n" development or larger

iayer equations. digital computers. have provided a good basis for com-

o Ettiptic flows described by a set of elliptic partial dif- p^uting*elliptic flows, i'e' to provide numerical solutions

r".Jniiai 
"quationi, 

uno by the conrinuity d;i;ffi- i:^tl:,l"tlset 
of Navier-Stokes equations' The numerical

Stokesequations. 
/--'--r r -'--' - '-' techniques developed and the digital computers avail-

able, horvever, are not yet developed far enough to yield
The equations for the former class of flows result from accurate solutions of flow problems relevant to engi-

the Navier-Stokes equations by introducing simplifying neering.
assumptions. Such assumptions were found necessary To obtain numerical solutions for such flows with
in the past to permit flow predictions to be carried out existing computers requires the incorporation of physi-
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cal assumptions and the employment of mathematical
approximations. Even then, numerical solutions of flow
problems can only be provided for simplified flow geo-
metries. For such flow geometries, other workersl-3 indi-
cated that the accuracy of computed complex flows, e.g.
flou's u'ith separation, is hindered not only by the vali-
ditl' of the particular physical assumptions employed,
but also by the accuracy of the numerical schemes used
to discretize the set of governing partial differential
equations. These investigations clearly stressed that, for
numerical predictions of complex flow fields, a concent-
ration of -efforts 

is required on the development of
numerical schemes suitable to reduce the inherent dis-
cretization errors present in all first order solution proce-
dures commonly employed these days.

It is generally believed that, with the incorporation
of advanced turbulence models, improved numerical
solution schemes will allow refined studies of the turbu-
lent. separated flows that are of real interest in many
fields of engineering. Much effort has already been
invested in improving numerical schemes,f6 but only
a small amount of work exists comparing predictions
with different schemes and directly with experimental
results.

Computations of laminar flow over an obstacle were
carried out in previous studies, e.g. by GreenspanT who
provided flow results within his generai study of solu-
tions of the Navier-Stokes-equati,cns. Ghia and Davis8
applied conformal transformations to present solutions
to the flow past a semi-infinite obstacle. Other numerical
studies exiit but only a few provide comparisons of
numerical and experimental results.e It is this compari-
son u'hich permits conclusions regarding the numerical
accuracy of the flow predictions.

Inr,estigations of turbulent flow over obstacles have
been performed experimentallyl'1c12 and a review is
provided by Durst and Founti.13 It was concluded that
manv numerical schemes for solving the flow over obsta-
cles vield too many numerical errors and, therefore'
prevent accurate engineering calculations, irrespective
of the validity of the physical assumptions, i.e. the turbu-
lence model, introduced into the solution procedures.
Reliable conclusions on the performance of turbulence
modeis to predict turbulent, separated ffows are only
possible when incorporated into reliable computer
codes for flow predictions.

In the present paper, an experimental investigation
is described of the flow over a fence carried out using
laser-Doppler anemometry (LDA) as a measuring tech-
nique. The dependence of the reattachment length on
Reynoids number was investigated for three blockage
ratios (S/H : 0.25,0.5 and 0.75, where .Fl is the channel
height and S the fence height). This study allowed the
Reynolds number range of which the laminar flow
regime is comprised to be determined. ln addition,
experimental velocity profiles in the laminar flow regime
were obtained for several Reynolds numbers to supply
experimental data for comparison with predictions using
various numerical schemes. The numerical schemes
chosen for comparison were the first order upwind
scheme (UDS),- the hybrid centralfupwind scheme
(CUDS),14 the hybrid power law/upwind scheme
(PLDS),15 the hybrid central/skew upwind scheme
(CSUDS),16 and the quadratic upstream weighted
scheme (QUDSC).6

In addition to the comparisons between the predic-
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tions and measurements of the flow over a fence, the
ffow over an obstacle of finite dimensions in the flow
direction was also investigated. This flow configuration
was previously studied experimentally by Gackstatter.r?
For the ffow over a fence and over an obstacle, the
experimental results shorved that the flow complexity
increases with increasing blockage ratio (SlH) of the
obstacle. This makes the selected flow case an ideal one
to study the behaviour of different numerical schemes
for flows of increasing complexity.

Experimental investigation

Test seclion and experimental procedures

The single open end air-driven flow channel employed
in the present investigation is shown schematically in
Figure /. Its major parts were made of aluminium and
all parts of the ffow channel were machined to very close
tolerances regarding parallelity of walls, surface rough-
ness, corner angles, etc. The flow channel received its
air supply through a plenum chamber containing flow
straighteners to ensure a well-controlled flow at the exit.
The side walls of this channel were made from glass
of 1 cm thickness in order to give rigidity to the test
section and, at the same time, to facilitate laser-Doppler
measurements with forward-scattered light. The air flow
into this channel contained scattering particles of 1.5 pm
mean diameter provided by a silicon oil particle genera-
tor similar to the one described by Cherdron et a|.18

Two-dimensional obstacles were abie to be mounted
inside the channel across the entire width. The dimen-
sions and the most important geometrical parameters
of the obstacles employed are given in Table I .

Optical arrangement

The laser-Doppler anemometer employed in the pre-
sent investigation was operated in the so-called fringe
mode and was set up to operate with forward-scattered
light and to measure only the x-velocity component,
which is in the flow direction and parallel to the channel
walls. The optical system consisted of a 15 mW Ne-He
laser, an integrated LDA optical system, manufactured
by OEI-Opto-Elektronische Instrumente, and incorpor-
ating double Bragg cells, light collecting optics and a

photomultiplier. A transient recorder was used to digi-
tize and store the signals from the high-pass filtered
output of the photomultiplier. These signals were then
transferred to a Hewlett Packard computer (HP ,4700)
and. processed as described by Durst and Tropea.le For
a given measurement of local, time-mean velocity at
a known r-y position, 100-5000 Doppler bursts were
processed and averaged, each having at least 50 signal
cycles.

The transient recorder employed was externally trig-
gered at a rate much slower than that at which the
Doppler bursts occur in order to eliminate biasing for
time-varying flow conditions. A time of 1-5min, de-
pending on the status of the flow and the location in the
flow field, was needed for each measuring point to gather
and process the required number of Doppler bursts.

Experimental results

Measurements of the reattachment length and velocity
distribution of the flow over a fence were carried out
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Figure 1 Sketch of air tunnel and test section (dimensions in mm)

Table 1 Test section dimensions
20

S/H = 0.2s
S/H = O.50
S/H = o.75

Test section H
dimensions (mm)

Lh
(mm) (mm)

s/H L/Hs
(mm)

Obstacle 10

7.5 0.75

2.5 7.5

2.5

S10

5

0

18180

0.25

with the instrumentation described above and are pre-
sented here for channel Reynolds numbers in the range
50 ( Re5 < 2000 and for channel blockage ratios (.S/H
of 0.25 0.5 and 0.75). The definition of the Reynolds
number used in this study is given by:

0.s
Res: - - (1)

u

where 0 is the cross-sectional average inlet channel
velocity, corresponding, in the laminar regime, to two-
thirds of the maximum channel velocity. Sii the obstacle
height and z the kinetic viscosity. The choice of length
scale to base the Reynolds number on is somewhat
arbitrary, but experience has shown that the variations
in reattachment length, Xf S, for different blockage
ratios, Sf H. are well Iorrelaied with Re5.

The first set of measurement results concerns the
lengths of the primary and secondary recirculation
regions occuring after the fence. They are dependent on
the flow Reynolds number and obstacle bloCkage ratio,
as weil as the obstacle extension in the ffow direction.
_ The dependence of the length of the primary recircu-
lation zone, X1 on Reynolds number, as-shownin Figure
2, follows the general behaviour also common tothe
backward-facing step flow.20 Three flow regimes can be

0.01 0.1 1 10

Be" (x 103)

Figure 2 Dependence of length of primary recirculation zone
on Reynolds number: 7: '1 mm

identified from the variation of separation length: a
laminar regime with a steady increase in Xrf S witli Rey-
nolds number up to Re5 - 250; a transitional regime
marked by a steady decrease in XrlS within
250 < Re5 < i500; and a partial separation length re-
covery into what would finally become the turbulent
regime in which X,/.S is not expected to vary much with
Reynolds number. The existing ffow range limitations
of the present test rig did not allow the study of the
turbulent flow regime. To the authors'knowledge, how-
ever, the presented measurements of reattachment
length variation with Reynolds number that cover the
laminar and transitional regimes of flow over a fence
with laser-Dopler anemometry are the first of their
kind.
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Figure 3 Reattachment lengths as function of Reynolds number
forfence: S/H = 0.5; 7 = 1 mm

Since the flow acceleration is considerably greater for
the fence with blockage ratio Sllt:0.75, it is not sur-
prising that this recirculation zone is already found at
lower values of Reynolds number, as can be seen by
comparing Figures 3 and 4.

In addition to the general investigations of the ffow
structure, i.e. the measurement of the integral para-
meters, detailed velocity profiles were obtained for Rey-
nolds numbers in the laminar flow regime . Figure 5
shows, as an example, the U-velocity profiles at several
X/S locations for the fence with blockage ratio Sf H
= 0.5. The two regions of recirculating fluid, one
attached to the bottom channel wall after the obstacle
and the other to the top channel wall can be clearly
distinguished.

Governing flow equations and solution procedure

Governing equations

The partial differential equations (PDE) governing the
steady recirculating flows presented in this study are
the Navier-Stokes equations. Mass conservation also
holds and this can be formulated to yield the continuity
equation. The ffows considered are two-dimensional
and incompressible and, hence, the general PDEs des-
cribing the flow field are:

Continuity equation:

6oU doV

-+ 
: =0 Q)3x dy

N4omentum equations:

6pUU 
*6pVUax 6y

dpUV 6pVV

-+-
0x 6y

These equations can be written in the form of a general
transport equation, as follows:

aprJ6 apVQ+_6x 6y

la26 d:d\:pl^.:+"rl+sd (5)
\dx' dy- /

'u'here @ denotes the U or V velocity components and
,S, represents the pressure gradient term in the x- and

;,-directions. The continuity equation results from this
general transport equation by setting d: 1 and So: 0.

The transformation of the PDEs for the U- and V-
momentum into the equivalent finite difference equa-
tions (FDEs) can be obtained by using the finite volume
method.22 The application of the finite volume method
requires discretizations of the convective and diffusive
fluxes at each control volume face. In the present study,

o.o1 0.1 1 10

Fe. (x 103)

Figure 4 Reattachment lengths as function of Reynolds number
forfence: S/H = 0.75; 7 = 1 mm

Figure 2 aireadl'shows the effect of the blockage ratio
on the separation length Xrf S f.or the fence geometry.
Strictly speaking, the block length-to-step height ratio
/S has also been varied in this diagram, but from pre-
vious results2l this should have little influence at least
for the range of //.S in question. It can be seen from
Figure 2 that the reattachment length drops significantly
with increasing blockage of the channel for the laminar
and transitional flow conditions investigated here.
Although the turbulent range has not been investigated,
the influence is expected to be somewhat weakened in
that flow regime.

One reas6n for the very marked changes of Xr/S with
blockage ratio is undoubtedly the appearance of a

secondary recirculation zone on the wall opposite the
fence. Details of this reverse flow region can be seen
in Figures 3 and 4 for the fences with S/H:0.5 and
Sf n :0.75, respectively. No such secondary separated
flow region u'ai found for the fence with SIH:0.25.
Although the interaction between the pressure field and
the velocity field is not fully understood in regions of
flow separation. it is evident that the recirculation zone
in Figures 3 and 4 is a result of a strong adverse pressure
gradient due to the sudden expansion behind the fence.

3o /a2U d2U\
=--!-+p{ 

-+ 
..l+^s,dx \dx' dy'I

6o ta2v d2Y\
=-!-+pl-+Jl+s"dx \ d,{' dy' /

(3)

(4)
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Figure 5 U-velocity profiles for fence: S/H = 0.5; Re"-- 112

the diffusive fluxes u'ere alwar-s approximated by central
differences known to be ofthird order accuracy.

Numerical schemes for discreri:ation of convective terms

The approximation of the convective fluxes in the
momentum equations applied at each control volume
face was performed with different numerical schemes.
Five numerical schemes were used:

r The upwind differencing scheme (UDS) is the sim-
plest unconditional stable scheme to approximate the
convection terms. It, however. induces a truncation
error which is felt like a diffusive term in the equa-
tions. This can lead to lou'accuracy in predicted solu-
tions of flow fields. This discretization scheme
approximates the d-control volume face value by
the nodal value taken in the upstream direction of
the velocity.

o The hybrid central/upu'ind differencing scheme
(CUDS) is based on the exact solution of the linear
one-dimensional steady convection-diffusion equa-
tion between 3n1, 11p6 nei_ehbouring mesh nodes.la
The convective terms are approximated by central
differences for Peclet numbers (Pe : pLu lf),
lPel<2. For lPel>2, lhe convection terms are
approximated by UDS.

o The hybrid power law/uprvind differencing scheme
(PLDS), in comparison to the above schemes, repre-
sents a better approximation of the exact solution
of the one-dimensional convection-diffusion equa-
tion. In this approximation.l5 a 'power law' is used
for lPel < 10 and UDS for tPei > 10.

o The hybrid central/skew upu'ind differencing scheme
(CSUDS)16 strongly reduces the problem caused by
the flow direction to grid line skewness. For Peclet
number lPel>2, this scheme tries to simulate a grid
in which the coordinate grid lines are aligned with
the local flow direction. It takes explicit account of
the local flow angle by determining the velocity vector
tangential to the streamline at the control volume
face. For lPel <2, the scheme uses central differences
for the discretization of the convection terms in the
equations.

r The quadratic weighted upstream differencing
scheme (QUDSC)6 is based on a local quadratic inter-
polation at the @surface for estimating both the con-
vective and diffusive flux terms on each control
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volume face individually. For non-uniform grid distri-
butions the local quadratic interpolations were de-
rived taking i-nto account the non-uniformity between
mesh points.23

Solution procedure

All computations presented in this paper were per-
formed with an appropriately modified version of the
computer code TEACH22 designed to solve two-dimen-
sional elliptic flow problems in terms of the primitive
hydrodynamic variables U, V and P. The code, in its
original form, uses CUDS and is based on the so-called
SIMPLE solution algorithm of Patankar and Spaldingi5
for the solution of the final set of iinear equations. As
a first step in solving a specified flow problem, the
TEACH program computes a preiiminary velocity field
by solving discretized versions of the momentum equa-
tions employing a guessed pressure field. This field is
then improved by solving the pressure-correction equa-
tion which contains a dilatation term (i.e. the local mass
imbalance) as a source. In the present study, the system
of algebraic equations resulting from the pressure-cor-
rection equations was always solved by the 'strongly
implicit method'2a instead of the tri-diagonal matiix
algorithm used for U and V discretized versions of the
momentum equations. The reason for using the stronglv
implicit method for the pressure-correction equation
was due to the faster convergence achieved by the
strongly implicit method for well-conditioned matrices,
as in the case of the pressure correction equation.25 For
the present study, the finite difference discretizations
described were incorporated into the computer code
TEACH and subsequently used to predict flows over
obstacles. Details of the final program are described
by Pereira.26

Comparison between numerical and experimental
results

The flow configuration of interest in this study is
depicted in Figure 6. Fluid enters from the left-hand
side of the channel test section and flows through a
parallel plate channel of height H. It then flows over
the obstacle of height S and length / leaving the channel
at distance /2 from the obstacle. In the present work,
the distances between the inlet plane and the obstacle
/,, exceeded those recommended by ZeiselzT and Denis
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Table 2 Characteristics of flow geometry: flow over fence

HI
Case (mm) (mm)

S/H t.,/S tr/S 8es,
vs/;

s t/s
{mm)

20 31

10 43
10 40

I '10 1 2.5 0.4
il 10 'r 5 0.2
lil 10 1 7.5 0.133

0.25
0.5
0.75

102
145
82.s

W l.- ", --{Figure 6 Geometry of flow over fence or obstacle

fo

4

1 000 2000

Figure 7 Grid dependence studywith CUDSforflowoverfence:
S/H:0.5: Re":145

and Smithzs in order to obtain a fully-developed velocity
profile in the channel before reaching the obstacle. The
outlet plane of the channel investigated was located
downstream of the obstacle and far enough upstream
to ensure a fully developed velocity profile for all flows
at the channel outlet. The velocity boundary conditions
at the solid walls were those of zero tangential and
normal velocities. At the inlet to the channel, a fully-
developed laminar U-velocity profile was prescribed and
the cross-flow velocity 7 was set to zero. The boundary
conditions at the outlet were 6IJ f dx: 0 and 6V f 3x : 0.

A grid dependence study of the predicted flow field
was performed for the flow over a fence with a blockage
ratio S/H:0.5. Figure 7 shows the reattachment
lengths predicted with the CUDS version of the TEACH
program and a Reynolds number of. Re: 145 using six
different numerical grids. As can be concluded from
Figure 7, the grids comprising 60 x 50 and 78 x 50 grid

Bes

Figure I Comparison of reattachment lengths as predicted and
measured functions of Reynolds number: (O) measurements;
(-) ouDSc. (---) PLDS; (-.-) CUDS; (....) UDS

points show very srnall differences in the predicted re-
attachment lengths. This does not mean, however, that
grid-independent solutions were obtained. Solutions
can be rather sluggish in reaching grid independence
and only with a grid of, for example, 150 x 100 could
such conclusion be derived. Due to storage limitations
imposed by the available CDC-285 computer, a grid
of 60 x 50 was used and was spread over the flow domain
of the six geometries investigated. The numerical grid
employed contracted before the obstacle with a contrac-
tion ratio of 1.2 and expanded after the obstacle with
an expansion ratio of L2.In the y-coordinate direction,
a high concentration of grid nodes was located around
the obstacle top face in order to assure that the high
velocity gradients in that region were resolved properly
in the flow computations.

Flow over a fence

The three flow configurations investigated for flows over
a fence are listed in Table 2. For the first flow case,
a fence-to-channel height of SIH:0.25 was chosen.
Figure 8 shows the dependence of the reattachment
lengths on the Reynolds number of the oncoming flow
for the range Re5 :72.5-250. For this flow case, four
numerical schemes were compared with each other and
with the measurements. The PLDS and CUDS finite
difference schemes yielded very similar results. The first
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figurg-1 1 Comparisonbetweenpredictionsandmeasurementsforflowovertence:S/H=0.5; Be":145; (-1 OUDSC(32x35);
{---)cuDs (60 x s0)

10

Figure 70 Comparison
CUDS

order upwind scheme UDS showed the most unsatisfac-
tory results. The QUDSC scheme resulted in numerical
results similar to the measured reattachment values.
with a small but consistent lower value. Figure 9 shows
the streamlines calculated with the QUDSC discretiza-
tion scheme for Res :102. The small curvature of the
streamlines outside the recirculation region produces
a small degree skewness of the velocity vector with the
grid lines. This leads to small rruncation errors (false
diffusion) in the results obtained and it is likely that

it is this numerically-caused false diffusion that yields
the predicted shorter separation length.

Figure -10 presents the U-velocity profiles at different
X/S locations measured and caiculated with the
QUDSC and CUDS schemes and shows that the main
differences are confined to the recirculation region. As
the CUDS scheme predicted a smaller length of the
recirculation region X,/S, (see Figure 8), the flow reco-
very is also in observable disagreement with the measure-
ments. The differences in the redevelopment region of
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FigureT2 Comparisonbetweenpredictionsandmeasurementsforflowoverfence:S/H:0.75; Be"=82.5;(---) UDS(60x50);
(-)OUDSC (60 x 50)
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the flow are small, and are expected to result entirely
from the deviations of the predicted ffow field from the
measured velocity field in the vicinity of the recirculating
flow region, as shown in Figure B.

Figure 11 shows the comparison of the U-velocity pro-
files at different X/S stations calculated and measured
for the second flow case investigated in this study, (see
Table 2). It corresponds to flow over a fence with a

-2-1 01234567

a ?

x/H

x/H

0

Figure 13

Table 3 Characteristics of flow geometry: flow over obstacle

s/H t.,/s tr/s E"_. -
US/v

Hrst/s
Case (mm) {mm) (mm)

2A 37
30 96
40 177
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fence-to-channel height ratio of Sln = 0.5 and a Rey-
nolds number of Re5 : L45. Figure.l1 confirms that the
CUDS finite difference scheme leads to unsatisfactory
results compared with the measurements. Better results
are obtained with the QUDSC scheme but, even for
this prediction scheme, much smaller numerical grid
spacings are necessary to yield closer agreement
between measurements and predictions.

Among the cases considered in the present study, the
flow over a fence with blockage ratio Sf n:0.75 and
Ret=32.5 (Table 2) is the most severe test reported
here for the various numerical schemes. The flow field
displays a high degree of skewness in front of the fence
and a large region of high velocity gradients in the shear
layer around the recirculation region attached to the
fence and located behind it. In addition, a region of
high adverse pressure gradient appears on the top chan-
nel wall, leading to flow separation on the wall opposite
the fence, causing a large recirculation region-on the
top wall of the channel. Studying this ffow case, the

choice of the first order upwind UDS scheme for discre-
tization of the convective terms was incorporated into
the present study to illustrate the bad performance of
a pure first order upwind scheme at low Reynolds
numbers. Its behaviour is similar to the behaviour of
the hybrid CUDS scheme for high Reynolds numbers.

Figure 12 shows the experimental values of the U-
velocity at different X/S locations and the computa-
tional results obtained with the UDS and OUDSC
schemes. The predictions obtained with rhe eUDSC
scheme are in good agreement with the experimental
values. As a consequence of false diffusion, the recircu-
lating flow region on the top wall of the channel pre-
dicted by the UDS scheme is much shorrer than the
corresponding region predicted u'ith the eUDSC
scheme. Thus, the recirculation region attached to the
fence grows longer for the UDS scheme. The velocitv
profiles predicted by the UDS scheme for XIS - 4, how"-
ever, are in reasonable agreement both with eUDSC
and with the measurements. A somewhat observable
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Figurel6 Comparisonbetweenpredictionsandmeasurementsforflowoverobstacle: S/H=0.75;Re"=177' (-) CSUDS(38x35);
(---)CUDS (69 x 53)

discrepancy only appears further downstream of the
fence. Identical conclusions can be draq'n from Figures
13(a) and (b) that illustrate the streamlines predicted
with the QUDSC and the UDS schemes respectivelY.

High order schemes, such as QUDSC, proved to be
difficult to handle when applied to flow over a fence
or obstacle for Reynolds numbers higher than approxi-
mately 250. Problems in the solution arose rvith the
fence with blockage ratio Sf H:0.75, for which'u'ig-
gles' occurred in the solution of the predicted velocity
fields, especially before the fence, in the region of steep
velocity gradients. where the skewness of the flow is
very strong. In this region, strong negative elements
in the coefficient matrix arise simultaneously at several
locations. The influence of these coefficients on the solu-
tion increases with Reynolds number Re5 (keeping the
mesh distribution constant). It is worth noting that, with
the 'wiggles', solutions up to Re5:590 could still be
obtained. However. for Re5 : 590, the observed under-
shoots in the numerical solution of the flow field yielded
a very small and unrealistic recirculation region before
the fence and on the top channel wall.

Flow over an obstacle

The predictions carried out in this study of the flow
over an obstacle were compared with experimental data
provided by Gackstatter.lT The geometrical flow con-
figuration incorporated into the prediction is shown in
Figure 6 and the geometrical and flow parameters are
listed in Table 3.

For a blockage ratio of S I H = 0.25, Figure 14 shows
the available experimental U-velocity profiles for Re5
: 37 and they are compared with predictions using the
CSUDS and QUDSC schemes. The numerical calcula-
tion with the CSUDS and QUDSC schemes displays
virtually coincident results. For one of the blockage
ratios investigated. Sf H:0.25, the flow field is, from
the point of view of flow predictions, simpler than the

fence flow with the same blockage ratio (see Table 2,
case I). The obstacle flow is similar to fence flow in
the region of the front contraction. After this, the flow
recovers above the obstacle to almost become a fully-
developed channel flow. Hence, the downward flow
results in a typical backward-facing step flow after the
obstacle's rear surface, with the streamlines approach-
ing the expansion cross-section nearly parallel.

Increasing the obstacle height to Sl H: 0.5 increases
the flow complexity. Nevertheiess, even for this block-
age ratio, no recirculation region was measured at the
top wall,13 nor was it predicted. It is this fact which
makes the obstacle flow configuration less complicated
in the dorvnstream region in predicting laminar separ-
ated flows than the corresponding fence flow. Figure
15 compares the measured U-velocity profiles with those
calculated using the QUDSC and PLDS schemes for
Ret:96. The QUDSC solution of the velocity field is
in good agreement with the measurements, whilst the
PLDS scheme shows a shorter recirculation region as

a consequence of excessive false diffusion induced by
the first order upwind scheme, at least in those flow
regions'w'here lPel > 10.

The last ffow configuration investigated in this study
was the flow over an obstacle with blockage ratio Sf H
=0.75 and for Ret:177. Figure 16 compares the
CSUDS and CUDS schemes with the measured U-velo-
city. The high skewness and large velocity gradients of
the flow before the obstacle may be the cause of numeri-
cal difficulties, resulting in strong simultaneous negative
coefficients in the CSUDS scheme and producing over-
and undershoots of the solutions. The fully developed
channel flow, however, in establishing itself between
the top obstacle surface and the top channel wall, pre-
vents the downstream propagation of these under- or
overshoots present in front of the obstacle. Although
disagreements occurred between the CSUDS and
CUDS schemes in the region 5 <X/S< 10. the mea-
sured U-velocity data available are in relatively good



Laminar flow over two-dimensional obstacles: M. G. Carva!ho et a!.

agreement with either the CSUDS or CUDS scheme
predictions and measurements of the flow over a fence.
The good agreement for Xf S<5 may be explained by
the fact that the high flow skewness is present together
with very small velocities, and vice-versa. Numerically
false diffusion, therefore, is very small in the flow field
behind the rear step of the obstacle.

Conclusions

Flows over two-dimensional flow obstructions mounted
in plane channel flow were predicted and compared with
the measured velocity field. Two types of flow obstruc-
tjons were compared, a fence and an elongated obstacle.
For each of these obstructions, three blockage ratios
of SIH = 0.25, 0.5 and 0.75 were considered. In this
way, the performance of five different numerical
schemes for discretization of the convection terms in
the basic ffuid flow equations could be investigated for
ffow fields of different complexities. The schemes used
in the present studies were the first order upwind
(UDS). hybrid central/upwind (CUDS). hybrid power
Iau'/upwind (PLDS). hybrid central/skewed upwind
(CSUDS) and quadratic upstream (OUDSC) schemes,
the latter being corrected for non-uniform grids. For
each of the six different flow geometries, a comparison
between two of the aforementioned schemes was per-
formed. This comparison demonstrated the superiority
of the QUDSC and CSUDS schemes. The better perfor-
mance of these schemes, in situations where convection
is not primarily balanced by streamwise diffusion, is
recognized and was demonstrated in this study.

Another conclusion that can be drawn from the pre-
sent results is that, in many respects, flow over a fence
ts a more severe numerical test for the performance
of the various schemes employed than the obstacle flow.
In flow over a fence, numerical errors originating in
front of the fence can be easily transmitted downstream
and, hence, can influence predictions in the entire flow
field. In contrast to this, flow over the obstacles used
in this study, displays the characteristics of a backward-
facing step type of flow, after the obstacle's rear surface.
This part of the flow, in the absence of a recirculation
region on the top channel wall, can be accurately pre-
dicted, even with low order finite difference schemes.

Although satisfactory predictions were obtained for
most flows, the QUDSC scheme needs to be improyed
further in order to remove the over- or undeishoots
occurring in the flow predictions. The problem u'as
detected for flow over a fence with a biockage ratro
)0.75 and for Re5 > 80.

, The present calculation clearly shows that the UDS,
CUDS and PLDS schemes, in situations of strong coup-
ling between transport processes in different direitions,
provide erroneous solutions. This behaviour is also pre-
sent in the turbulent flow over fences and obstaCles.
Because of this, it should be concluded that, in order
to investigate the validity of turbulent models in the
flow geometries analysed in the present work, the UDS,
CUDS and PLDS should be avoided, unless a verv large
computer storage is available and computer time is not
severely limited.

In flow geometries with large regions where convec-
tion is primarily balanced by cross-stream diffusion or
sources, the grid independence study for low order
schemes should be based, in the absence of experimental

data, on comparisons. with results using higher order
schemes or results using a numerical giid cbmprising
high numbers of grid points. e.g. 150 x 100 or larger.
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