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SUMMARY

A grid-embedding technique for the solution of two-dimensional incompressible flows governed by the
Navier-Stokes equations is presented. A finite volume method with collocated primitive variables is
employed to ensure conservation at the interfaces ofembedding grids as well as global conservation. The
discretized equations are solved simultaneously for the whole domain, providing a strong coupling between
regions of different refinement. The formulation presented herein is applicable to uniform or non-uniform
Cartesian meshes. The method was applied to the solution of two scalar transport equations, to cavity flows
driven by body and shear forces and to a sudden plane contraction flow. The numerical predictions are
compared with the exact solutions when available and with experimental data. The results show that neither
the convergence rate nor the stability ofthe method is afiected by the presence ofembedded grids. Embedded
grids provide a better distribution of grid nodes over the computational domain and consequently the
solution accuracy was improved. The grid-embedding technique proved also that significant savings in
computing time could be achieved.

KEy woRDs Embedding non-staggered grids Incompressible recirculating flows Finite volume method

1. TNTRODUCTION

The numerical solution of fundamental or practical engineering flow problems requires in
most cases the solution of the Navier-Stokes equations. Numerical solutions based on finite
differences/finite volume methods require the overlapping of a discrete computational domain
over the physical domain. To decrease local truncation errors in regions of steep gradients or to
resolve different flow length scales, it is necessary to use a very large number of mesh points.
However, the use of a refined mesh very often brings high densities of mesh points in regions
where they are required and also where they are not required. This leads to the use over the whole
computational domain of too many mesh points and to very long computing times to achieve
convergence. Several different alternatives have been devised to overcome this problem, namely
overlapping grids, zonal methods and grid embedding. Other techniques such as the multigrid
method and adaptive schemes can be used and combined with these methods.

A technique often employed for treating complicated flow geometries is to use several grids,
each one optimized for an individual zone of the flow field. The problem of grid generation is
greatly simplified when grids are allowed to overlap,r but the transfer of information between the
grids becomes complicated and it is difficult to ensure global conservation. Thus this method has

been mainly used for the prediction of transonic flows together with a full potential formulation2
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or solving the Euler equations.3 A more popular approach is the zonal method where the
individual grids are patched together rather than overlapped. It is also possible to solve different
equation sets in the different zones. This method has been used to solve the full potential
equations,a the Euler equations,s'6 the Euler/t,lavier-stokes equationsT-e and the incompressible
Navier-stokes equations. 1 o

Grid embedding is a technique where a single coarse grid covers the whole domain and local
refinement is carried out in the regions of high gradients without changing the basic grid
structure. This method has been applied to the prediction of transonic flows using the full
potential equations,ll the small-disturbance potential equationl2 or the Euler equationsl3 and
laminar incompressible flows.1a Adaptive schemes used in conjunction with grid embedding have
been applied to compressible flows using either the Euler equationsl5-17 or the Navier-stokes
equations.l8'1e The multigrid method has also been coupled with grid embedding in the
prediction of transonic flow fields using a potential flow analysis.2o Adaptive techniques and the
multigrid method have both been used together with grid embedding to predict incompressible
flOWS.21-23

Each zone in zonal methods or each embedding mesh in grid-embedding techniques is
generally considered independent. As recognized by Fuchs,2l the only interaction among the
different subdomains is done by transferring boundary data. This degrades the efficiency and
perhaps the stability of the numerical method.

In this paper a new grid-embedding method is presented where the whole domain is treated
simultaneously regardless of the level of grid refinement. This enhances the coupling between
regions of different level of refinement and does not reduce either the efficiency or the stability of
the method. Conservation at grid interfaces is ensured as well as full conservation. The
Navier-Stokes equations are solved in non-staggered grids using a primitive variable, finite
volume method. The method has been used to predict two-dimensional, steady, laminar,
incompressible flows.

In the next section the numerical method developed is described for a general scalar transport
equation and for the flow equations in particular. The method has been applied to the solution of
two test cases described by only one scalar transport equation as well as to the flow equations for
three test cases: a cavity flow driven by combined shear and body forces, the classical lid-driven
cavity flow and a sudden plane contraction. Results and discussion are presented in Section 3. In
the last section the main conclusions of the present study are drawn.

2. DISCRETIZATION PROCEDURE AND SOLUTION ALGORITHM

2.1. Basis of local grid refinement

The physical domain is discretized using a coarse rectangular mesh, either uniform or non-
uniform. In regions of high gradients, finer mesh spacing is required and embedded cells are used.

These embedded cells are generated by halving on a cell-by-cell basis the mesh spacing in both the
x- and y-direction. This process can be repeated, leading to as many levels of grid embedding as
desired.

Each cell is numbered sequentially and its neighbours are stored in unidimensional arrays.
Four arrays are necessary to store the north, south, east and west neighbours ofeach grid node.
The dimension of these arrays is slightly higher than the total number of grid nodes. This small
overhead in the dimension of the arrays is required to keep track of interfaces between regions of
different grid refinement. Three additional points for each cell interface between regions of
different level of refinement are stored: two on the coarser side of the interface and one on the
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other side. These auxiliary points are also stored sequentially. Thus each array contains
sequentially the information concerning the neighbours of the grid nodes, followed by the
neighbours of auxiliary points on the finer side of the grid interface and finishing with
the neighbours of auxiliary points on the coarser side of the grid interface.

This data structure can be exemplified by referring to Figures 1 and 2. Grid node N1 (see
Figure 1) on the finer side of the interface has the south neighbour Pl. This is an auxiliary point
whose west and east neighbours are grid nodes W and P respectively. Grid node S (see Figure 2)
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Figure 1. Coarse-grid control volume
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on the coarser side of the interface has the north neighbour e, an auxiliary point whose west and
east neighbours are grid nodes P and E respectively.

Notice that the dimension of the arrays where the dependent variables are stored is equal to the
number of grid nodes. Only the dimension of the four arrays containing the neighbours of each
cell is slightly higher, as explained above.

With this data structure and provided the refinement ratio is kept equal to two, all possible
interfaces are of the kind depicted in Figures 1 and 2 irrespective of the refinement level. No
additional complications arise from the use of several levels of grid refinement. It is only necessary
to give as input the refinement level desired for each cell of the coarsest grid.

The storage of the information in unidimensional arrays has several advantages. First, the
whole domain can be treated at once regardless of mesh refinement. Secondly, when the physical
domain is not rectangular, as, for example, in a sudden contraction, significant savings in storage
can be achieved. Finally, unidimensional arrays are favourable to speed up the calculations in
vectorial computers.

2.2. Discretization of a transport equation

The governing differential equation for the steady two-dimensional transport of a general
scalar Q can be written in Cartesian orthogonal co-ordinates as

where U and V arc the velocities in the x- and y-direction respectively, p is the density, f, is the
diffusion coefficient and Sr is a volumetric source strength.

The finite volume method is used to discretize the integrated form of equation (1). The diffusive
and source terms are approximated with central differences and the convective term is discretized
by the hybrid centrafupwind differencing scheme.2a When mesh embedding is not considered,
the discretized equations can be cast in the following form (see Reference 25 for details):

where the index i runs over all neighbouring points (N, S, E, and W), S, denotes the source term
and the coefficients ap and a; are combined convection/diffusion fluxes across the faces of the
control volume. When the hybrid scheme is used, these coefficients are given by the following
well-known expressions appropriate for programming purposes:

fro,onf,o,0>{(,r*).*(', #).n, (1)

(2)o"Qr:|a,Q,+su,

4li:Dr*max(-C",0),
4s:D.*max(C.,0),

a": D"1max (- C", 0),

4w:D**max(C*,0),

(3a)

(3b)

(3c)

(3d)

ap:Dai. (3e)

In these equations the lowercase letters identify the faces of the control volume. The diffusive
fluxes are denoted by D and the convective ones by C. These fluxes are evaluated as

C^: pn\Lx, (4a)
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C.: P"UTLY

D": l.Ax/6yp,

D.:l.Lyf 6xt",

d"r : (6xwp, dp + 6x..t {*)/6x*r,
0p z : (6 xnpz 6 p * 6 xpp 2 $ j) f 6 xrr.
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(4b)

(5a)

(5b)

(7a)

(7b)

and similarly for the south and west faces. Distances between nodes N and P and nodes E and P
are denoted by dy*r and dx". respectively.

When grid embedding is used, interfaces between regions of different refinement need particu-
lar attention. In all such interfaces there is one grid node on one side of the interface and two
nodes on the other side, as sketched in Figure 1. To exemplify the method developed here, only
one interface between regions of different refinement is considered, at the north face of the control
volume, but other interfaces can be handled as well.

Perhaps the most attractive feature of the control volume formulation is that the resulting
solution implies integral conservation of quantities such as mass, momentum and energy over any
group of control volumes, including the whole domain. Thus special care was taken in order to
ensure conservation across the interfaces. This can be automatically ensured if fluxes are
calculated in the same way for grid nodes on both sides of the interface. Hence the fluxes are
calculated using the dependent variable values at grid nodes Nl and N2 and the auxiliary points
Pl and P2 represented in Figure 1. Points P1 and P2 have the same y-co-ordinate of the grid node
P and the x-co-ordinates are equal to the x-co-ordinates of points Nl and N2 respectively. When
the control volume associated with node N1 is considered, the south flux is calculated using node
N1 and point P1. Similarly, node N2 and poirrt P2 are used to calculate the south flux for the

control volume centred in node N2. Finally, the flux across the north interface for the node P
control volume is the sum of two tenns, one calculated using node Nl and point P1 and the other
calculated using node N2 and point P2. In this way the discretized equation for the control
volume centred in node P can be written as

- d., ) * a*r( Q*z- 0r) * 5,,

where the summation extends over points S, E and W only, as well as the summation for
evaluating a".

The problem of dealing with an interface between regions with different refinement has been

replaced by the problem of handling the second and third terms of the right-hand side of the
previous equation. If the two terms were included in the source term S,, this would strongly
weaken the link between node P and nodes N1 and N2. There would be an explicit link through
the source term Su rather than an implicit link through the coefficients ar and so the interface
would behave as a boundary. Consequently the rate ofconvergence would decrease significantly.
On the other hand, if the terms a*r dNr and ap2 @N2 were included in the summation and the terms
aNrdpr and anrS*2 were included in the source term, the aforementioned problem would be

solved but in this case we would end up with a coefficient matrix which is not diagonally
dominant. This would be only a restriction to the choice of the solver but we prefer to avoid this
additional complication. The approach followed here begins with the evaluation of Qrt and Qp
by means of linear interpolation from neighbouring grid nodes:

(6)apfip:La,@, + a*r (@N1
t
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Introducing these expressions in equation (6), one obtains, after simple algebraic manipulations,

or6":1o,d, ** aN, (dN, - d"l +ffi a,z(6xz- 6p)

.* aNr (dnr - d*l +f; cNz(d,tz - du) * s,. (8)

The second and third terms on the right-hand side of this equation can be included in the
summation, ensuring a strong coupling between grid nodes on opposite sides of the north
interface, whereas the fourth and fifth are included in the source term. Thus the final discretized
equation can be cast in a form similar to equation (2):

o;Q":)a',Q,+ s',, (9)

where the summation includes the five neighbours (S, E, W, Nl and N2). Combined convection/
diffusion coefficients are given by

a|:ag,

aL:as,

alw:aw,

oir,:+- o.,:*la [D", +max(-c",, o)],
o,lwp orwP

ai.,, :*ry on, :*9 [D", *max ( - c"r, o)],
dxEp oXzp

a*:Ea'i,

where

Cnr: p,tV"t(Lxl2),

D,1 : ln1(Ax 12)16y"*r,

and similarly for Cn, and Dnr. The source term is written as

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

(11a)

(1lb)

(t2)

(1 3)

(14)

The same ideas are used to write a discretized equation for a control volume on the opposite
side of the interface as represented in Figure 2, where point P is the correspondent to point N1 in
Figure 1. For the sake of simplicity, only one interface between regions of different refinement is
considered again. The flux across the south boundary is calculated with the help of point 51,
where the dependent variable is calculated from

dsr : (6xswsr @s * 6xs* dr*)/6r*rrn.

The introduction of this expression in the discretized equation yields

sl,: s, +Panr (dxr - d*)+dJT' s*z(Qnz- 6).
OIWp OIFp

ap 6p :Lo, d, +*Yq a(ds - dp) + 3* o, (dr* - dr) * s,.
i tlISSW oISSW



CALCULATION OF LAMINAR RECIRCULATING FLOWS

This is the equation corresponding to equation (8) and the summation now includes neighbours
E, W and N. Equation (9) still holds with the summation extending over neighbours N, S, E and
W and with coefficients given by

541

and

4fu:(tN,

al:ae,

alv:av,

, 6x.*r, dxr*r,ai:-;Yas:;: [D,+max (C., 0)],
dXssw dXSSw

,r,dXr*ap: LailV-.-agi 0rssw

Sl:s,+il'rdsdsw.
dXssw

(1sa)

(15b)

(1sc)

(15d)

(1se)

(16)

Thus the discretized equations for any control volume can be written as equation (9). Whenever
common interfaces are presented, the coefficients of this equation are calculated in the conven-
tional way using equations (3)-(5). In the boundaries of embedding meshes the coefficients are
modified as described above.

The method used to obtain values required for the flux balance at interfaces ensures conserva-
tion and is based on linear interpolations. Although more complex interpolation schemes could
have been used, the present one was chosen because despite its simplicity it has yielded accurate
predictions for the test cases studied.

2.3. Discretization of the flow equations on a non-staggered grid

The governing differential equations for mass and momentum conservation in a 2D, steady,

laminar, incompressible flow can be written as

! ort*! @D:0,ox oy
(t7)

fio,,t*f,o,w:fi(rf).*Q{)-*, o8)

{,,uv)+*rpvn:*(,K).*0n-X, (,e)

where p is the static pressure and p is the dynamic viscosity. The terms of these equations are

identical to those of equation ( 1). Indeed, setting 0 : I in equation ( 1), the continuity equation ( I 7)

is recovered, whereas setting Q:U or 6:V leads to the momentum equations. Thus the
discretization of these equations follows the steps previously described. However, the coupling
between pressure and velocity poses new problems which traditionally have been solved by
means of a staggered grid. In such a grid the location of the control volumes for the velocity
componcnts is shifted in such a way that the velocities at the faces of the scalar control volumes
become directly available. Since there are three sets of control volumes in the two-dimensional
case, the complexity and the storage requirements are much greater than for a collocated grid. In
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the last few years several authors26'27 have shown that non-staggered grids can produce as

accurate solutions as staggered ones with no increase in computational effort provided that a
special interpolation is used to calculate the velocities at the faces of the control volumes. The
grid-embedding structute would become much more complicated if a staggered grid were used.
Hence a non-staggered grid was used in this work.

2.4. Pressure-uelocity coupling

The method described by Peric et a1.,27 which is a modified version of the SIMPLE algorithm
applied to non-staggered grids, is used here, although underrelaxation is introduced in a different
way as explained below.

The U- and Z-momentum equations are solved first using guessed values for the pressure field
and for the mass fluxes. Pressures at the control volume faces are calculated by linear inter-
polation. In general, the solution of these equations, denoted by U* and V*, does not satisfy
continuity and thus a source term appears in the continuity equation given by

(20)

where the asterisk identifies a guessed value. The modification of this expression when an
interface between grids of different refinement is present is straightforward. Evaluation of the
convective fluxes requires the calculation of the velocity components at the faces of the control
volumes. Peric et a1.27 have shown that if linear interpolation were used to calculate the velocity
components at the interfaces, decoupling between pressure and velocities would occur. To see

how this can be avoided, we write the discretized x-momentum equations for grid nodes P and E,
in Figure I or 2, as

-p*)

),,

),
These equations come directly from equation (9) when the primes are dropped for simplicity. The
asterisks are introduced to identify guessed values and the source term is explicitly written as the
pressure gradient. The U*-velocity at the cell interface is obtained from equations (21) using
linear interpolation for the summations (denoted by the overbar in the equation terms) and the
pressure difference between grid nodes on each side of the interface. This yields

lLo,u! \ -w4"+l -(;).^v@i-pil Q2)

\ o* 
l.

Hence the cell face velocity depends directly on the pressures at the two neighbour nodes, which is

the basis of the staggering practice.
For the interfaces between regions of different refinement the same ideas are used. Thus,

referring to Figure 1, the north cell face velocity is given by

"il:(
lalul -A,y(p!i

lalul - Ly(p!

Ap
(2ta)

(21b)
"il:(

-pf )

aP

lLqvf \Vir:l ' I
lcpl
\ / nl

Ax
7(zfi' -pir),-(;) 

,
(23)
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where the overbar denotes the linearly interpolated value from grid node N1 and point P1.
Values at point P1 are linearly interpolated between grid nodes W and P. A similar equation is
used to calculate YIz.On the opposite side of the interface (see Figure2) we have
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(24\
lLo,vf \ z -

"r 
:( +)", - (*)",ft,r-,ar

where the overbar denotes the linearly interpolated value from grid node P and point 51. Values
at point Sl are linearly interpolated between grid nodes S and SW.

To enforce mass conservation, velocity and pressure corrections are introduced as in the
SIMPLE algorithm:

/i\tt,__t:l Ly(pr_pr). (25)v e- 
\o'l'

Identical expressions can be written at the boundaries of embedding grids. When the velocity
components are expressed as a sum of estimated plus corrected (identified by the prime)
components and introduced in the continuity equation, a pressure correction equation results.
The solution of this equation gives the corrections used to update velocities and pressure as well
as mass fluxes at the control volume faces. These mass fluxes are used to calculate the convective
terms in the momentum equations.

To attain convergence, underrelaxation factors for velocities and pressure are used. The general

discretized equation (9) is changed according to

la,g,+5"
,br:ooL o* a 1t -46) d$u, (26)

where the primes have been dropped for simplicity, a6 is the underrelaxation factor and {$d is the

@-value at node P in the previous iteration. The velocity at a cell face is calculated according to
the pressure-weighted interpolation method suggested by Majumdar2s and Miller and Schmidt2e
and examined by Kobayashi and Pereira3o for flows with rapidly varying pressure gradient
regions yielding solutions independent of relaxation factors. Using this method, equations (21)

and (22\ read

ur: *"(

u*: ""(

lLo'u! \ -
u,:""( +)._""(;)"

laP! - Lv(p| -p*)
i

aP

lalu! - L,y(p! -pi,)
i

)_ 

*,, -au)u$d,

)" 
* ,, - ao) uiru,

Ay (p$ -pil) +(1 - au) Ul"'o

(27a\

(27b)

have been used
grid-embedding

aP

(28)

Grid embedding does not
For the solution of the

aiming to identify which

present further complexities.
systems of linear equations, two different methods
one would be more suitable to employ with the
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technique. One is the biconjugate gradient method3l using an incomplete block-LU decomposi-
tion32 as preconditioning. The other is a modified version of the Gauss-Seidel line-by-line
iteration procedure. With grid embedding a grid node can have more than four neighbours and
this requires a modification of the usual version of the method. The new feature is the increase of
the number of sweeps whenever an interface between regions with different grid refinement is
found in order to make it possible to apply the Thomas algorithm in each sweep. This can be
better explained with the help of Figure 1. A sweep in the x-direction presents no problems since
the values of the variable at the south and north interfaces are temporarily assumed as known.
But in the y-direction there is a problem since grid node P has two north neighbours. The idea is
to perform two sweeps. In the first one the values of the variable at grid nodes W, E and N2 are
assumed as known and in the second sweep the values at grid nodes W, E and Nl are assumed as

known. Thus the number of sweeps in a given direction is dictated by the maximum level of grid
refinement in that direction.

The convergence criterion is to demand the normalized sum of the absolute residuals for each
variable over all the control volumes to be less than or equal to a prespecified value. The
normalization value is the inlet mass flow rate for the pressure correction equation and the inlet
momentum for the momentum equations.

3. RESULTS AND DISCUSSION

3.1. Case l: scalar transport equation

The general transport equation (1) has been solved for a case where an analytic solution
exists33 given by

d: sin (zx) cos (zy),

U : - Ansin(zx)sin(zy),

V: - lncos(zx)cos(zy),

so:2n2 6.

(29a)

(2eb)

(29c\

(2ed)

The density and the diffusion coefficient were set equal to unity and.l'. is an independent solution
parameter which may be used to change the Peclet number. The calculated analytic solution
(equation (29a)) is shown in Figure3 for the domain xe[0, 1], ye[-0'5,0'5]. Owing to the
symmetry of the problem, the calculation domain was restricted to 0'5(x(1,0(y(0'5 with
symmetry boundary conditions imposed on x:0'5 and y:9.

The analytical and numerical solutions were compared by means of the average absolute errors
calculated over the computational domain:

E6:

N

I [dr-sin(zx)cos(zy)]
t:1 (30)

where N is the number of grid nodes and @, denotes the numerical solution of each grid node.
Figure 4(a) shows a 40 x 40 uniform grid and the corresponding contour levels of the local

absolute errors obtained with this grid. It can be seen that maximum errors occur close to the left
bottom corner of the calculation domain and so this region was covered with an embedding grid
as shown in Figure 4(b). When a conventional code is used, this refinement must be extended up
to the opposite boundaries and such a grid is represented in Figure 4(c). The corresponding

N
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Figure 3. Streamlines of the flow

Table I. CPU time and mean value of absolute errors for the grids used in test case 1

545

EoBase
grid

26
39

Type of grid
(see Figure 4)

Embedding
grids

Number of CPU time
grid nodes (s)

20x20
20x20
24x24

4(a)
4(b)
4{c)

400
448
576

No
Yes
No

15 3'6 x 10-a
18 3'2 x l0-a
25 2'l x lD-a

20x20
28x28

4(b)
a(c)

Yes
No

592
784

2'l x lO-a
1'4 x 10-a

40x40
40x40
48x48

a{a)
4{b)
4(c)

1600
t792
2304

98
t07
150

No
Yes
No

0'8 x 10-a
0'7 x 10-a
0'4 x 10-a

40x40
56x56

4(b)
4(c)

2368
3136

179
268

Yes
No

0'5 x 10-a
0'3 x 10-a

contours of absolute errors show that the local errors decrease in the regions where grid
refinement was chosen.

All the meshes used in the solution of this problem are described in Table I. Only one level of
grid refinement was used for embedding grids. Results presented in Table I were obtained using
the preconditioned biconjugate gradient method. This method yielded for this linear problem a
faster convergence than the line Gauss-Seidel method. The ,l-parameter (see equations (29)) was
set equal to unity, yielding a maximum local Peclet number of less than two. Therefore central
differences are used for convection discretization and very small solution errors were found (see

Table I). Thus the idea of using finer grids in this case is to investigate the effect of the use of
embedding grids on convergence and computing time. Convergence was achieved when the sum
of the residuals was less than 10-3.
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Figure 4. Typical meshes and local absolute effor contours for test case 1: (a) uniform 20 x 20 mesh; (b) 20 x 20 coarse
gridwithonelevelofrefinement;(c)non-uniform28x28mesh.Contourvalues:A,7xl0-a;B,6xlQ-a;C,4x10-a;

D,2xl0-a; E, 1x10-a;F,0'8x10-a; G,0'6x10-a; H,0'4x10-a; L0.2x10-a;J,0.1 x10-a
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The results listed in Table I show, for example, that the solutions obtained with the grid

represented in Figure 4(c) with 576 grid nodes and a grid similar to the one shown in Figure 4(b)

but with a larger embedding grid (592 grid nodes) required about the same CPU time. However, a

reduction of 30o/" in CPU time can be obtained with an embedding grid when compared with a

conventional grid with the same refinement extended up to the boundaries. The CPU time can be

markedly reduced if more than one level of grid refinement is used. Calculations were also

performed by changing the parameter L between 0'1 and 100, but they are not presented here

since the results are qualitatively similar.

3.2. Case 2: transport of e step change

The transport of a step change in a unilorm velocity field is a classical test case for assessing

convection discretization schemes. Here the idea is not to assess the discretization scheme but to
show that the accuracy can be improved when a given number of grid nodes are distributed

according to the features of the solution by means of embedding grids.

The scalar transport equation (1) with no source term is solved in a square domain. The

velocity field is unilorm and its direction defines the boundary conditions. A line with the

direction of the velocity passing through the centre of the domain originates two regions. The

boundary @-value is equal to unity on the upper region and zero elsewhere. Thus the solution
presents a steep gradient close to that line. When the velocity is aligned with the x- or y-direction,

the solution is easily predicted, but when the velocity vector is skewed with grid lines and local

Peclet numbers are high, false diffusion yields poor results for most convection discretization

schemes.

Solutions are presented for a Reynolds number equal to 500, taking the side of the square

domain as the characteristic dimension. The angle 0 between the velocity Yector and the

x-direction was considered equal to 45' and 22" for the two cases studied. Figure 5 shows some of
the meshes used. Several levels of embedded grids were used, with a maximum level of refinement

along the direction of the velocity and passing through the centre of the domain where a steep

gradient occurs.
Figure6(a) shows the profiles corresponding to the vertical centreline and 0:45o for several

meshes with a similar number of grid nodes. Each profile presents the results corresponding to a

uniform grid and an embedding one (obtained from a coarser grid refined along the direction of
the velocity vector). As expected, the numerical solution only becomes close to the exact one when

the dimension of the cells leads to a local absolute value of the Peclet number of less than two. In
fact, this is the limit value above which the first-order upwind differencing scheme suffering from

false diffusion is used. However, the point we want to stress here is that for two grids with about

the same number of grid nodes, the one which has been locally refined yields significantly better

results. To attain the same level of accuracy with a conventional code, the refinement would have

to be extended from one boundary to the opposite one. This would require a much larger number

of grid nodes, with a consequent increase in CPU time.

Whenthe angle0 isreduced to22",thebehaviourof thesolutionsshowninFigure6(b)is
identical to that for 0:45'but the problem of false diffusion is not as severe as previously.

In both cases,0:22o and 45', Figure6 shows that the numerical solution through the

interfaces of the embedding grid is smooth.

3.3. Case 3: cauity flow driuen by combined shear anil body forces

The 2D steady, laminar, incompressible flow equations were solved for a cavity where the flow

is driven by combined shear and body forces. This test case was studied because the exact solution

is known and given by Shih et al3a The boundary U- and Z-velocities atezero everywhere except

547
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Figure 5. Typical meshes for test case 2: (a) uniform 40 x 40 mesh (1600 grid nodes); (b) embedding gridfor 0:45' (1474
grid nodes); (c) embedding grid for 0:22" (1726 grid nodes)

along the top surface, where V is zero but there is a positive U-velocity driving the flow.
Calculations were performed for Re: I and 10, but since no significant differences were found,

only the results for Re: 1 will be presented here. Both of the aforementioned methods for the
solution of the systems of linear equations were tried. It was found that when the underrelaxation
parameters are optimized as well as the number of solver iterations, the preconditioned
biconjugate gradient method converges faster than the Gauss-Seidel line-by-line iteration
procedure. However, the convergence rate is much more dependent on the underrelaxation
parameters when the biconjugate gradient method is employed. Thus all the results presented
from now on were obtained using the line-by-line iteration procedure. The underrelaxation
parameters used were 0'9 and 0'1 for the velocities and for the pressure respectively.

The solution of the problem using a uniform 20 x20 mesh has shown that the results were close
to the exact solution except near the bottom and side boundaries. Thus a coarser base mesh with
embedded grids close to those boundaries was chosen. Both grids are shown in Figure 7. Figure 8
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(a) G)
Figure 7. Meshes for test case 3: (a) unifonn 20 x 20 mesh (400 grid nodes); (b) 16 x 16 coarse grid with one level of

refinement (394 grid nodes)

shows that the embedded mesh yields more accurate predictions for planes near the boundaries.
Far from the boundaries both meshes yield good results. rhe CPU time required to attain
convergence was 124 s for the embedded mesh and 140 s for the uniform one.

3.4. Case 4: lid-drit:en cauity flow
Although the previous test case has the advantage ofthe existence ofan analytical solution, no

recirculation regions occur on the corners and the use of a coarse mesh may not reveal the
necessity ofa fine resolution in recirculating regions close to the corners. The classical lid-driven
cavity flow where no body forces are present and the flow is driven only by the lid moving with
uniform velocity is a more severe test case since several recirculating regions .un ipp"u,
depending on the Reynolds number. Owing to the impossibility of deriving the exact solution for
this case, the grid-independent numerical results obtained by Ghia et ;I:s are considered as
reference values.

Calculations were first performed for uniform grids with 129 nodes in each direction for
Re:100 and 1000. The results were found to be in close agreement with those reported by
Ghia et al.3s for the same mesh and so they will be used for comparison purposes.

Typical meshes used for this test case are shown in Figure 9. The first mesh is uniform with 64
grid nodes in each direction (4096 grid nodes), the second is a 32 x 32 base mesh with two levels of
refinement close to the boundaries (4288 grid nodes) and the last is a 64x64base mesh with one
level of grid refinement (9472 grid nodes).

For Re:100 the underrelaxation factors ofthe previous test case,0.9 for velocities and 0.1 for
pressure' were used. The embedded grid shown in Figure 9(b) yields accurate predictions
everywhere. Near the boundaries they are much better than those obtained with the uniform
mesh shown in Figure 9(a). Two examples can be seen in Figure 10(a). The required CpU time for
the embedded grid is less than 50% of the CPU time for the 64 x 64 mesh wittra similar number of
nodes and about 26 times smaller than that required with 129 xl29 g.ird nodes.

Numerical solutions obtained for Re:1000 with the embedding grid used previously, on a
32x32 base, show that the grid is too coarse since the predicted resulti (not shown here) were far
from those predicted using a very refined mesh. On the other hand, the 64 x 64 uniform grid leads
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to significant errors near the boundaries but the results are accurate elsewhere. Results obtained
with this mesh as well as with the embedding mesh shown in Figure 9(c) are compared with the
129 x I29 uniform mesh in Figure 1(b). The embedding grid yields good predictions and the
savings in CPU time over the finer uniform mesh exceeded ffioh.

3.5. Case 5: suilden plane contraction

The experimental data obtained by Durst et a1.36 for laminar two-dimensional flow through a
plane duct with a sudden contraction constitute the last test case. The channel flow consists ofa
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duct 10mm in height and a contraction ratio of 4:1, yielding 2'5mm for the duct height
downstream of the contraction. Owing to the symmetry of this geometry, computations were only
carried out for one half of the duct. Inlet conditions were taken from the experimental data. The
Reynolds number based on the inlet mean velocity and on the duct height was equal to 95.

Computations were carried out on uniform grids with 40 x 24, 80 x 48, 160 x 96 and 320 x 192
grid nodes in the longitudinal and transverse co-ordinate directions respectively. Error estimation
based on Richardson extrapolation22 was carried out and the results are given in Figure 11. They

Figure 11. Errorestimationforthesuddenplanecontraction,lUl,-U2llU*",,,n,",(A,0'2; B,0'l;C,0'01; D,0'001):(a)2h,
40 x 24 uniform grid; h, 80 x 48 uniform grid; (b) 2ft, 80 x 48; ft, 160 x 96; (c) 2h, lffi x 96; h, 320 x 192



554 P. COELHO, J. C. F. PEREIRA AND M. G. CARVALHO

Figure 12. Meshes for test case 5: (a) 80 x 48 uniform grid (2,100 grid nodes); @) a0 x 24 coarse grid with three levels of
refinement (2430 grid nodes)
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show that larger errors occur near the contraction and so this is the region where embedding grids
should be used.

Figure 12 represents the embedding grid used (2430 grid nodes) as well as the 80 x 48 uniform
mesh with a comparable number of grid nodes (2400). Several predicted velocity profiles are
shown in Figure 13 along with the available data. The co-ordinates are taken from a frame
located at the contraction plane. Solutions obtained for the meshes shown in Figure 12 and for
the finer uniform mesh used (320 x 192) were plotted. However, it was found that the embedding
grid yields everywhere results virtually equal to those obtained with the finer uniform mesh and
the two solutions are hardly distinguishable. They both compare favourably with the data and
the differences are in the range of experimental uncertainty. The velocity profiles at x: -2'5
and - 1.0 mm confirm that the solution computed with an embedding grid is smooth through
interfaces between regions of different levels of refinement. The 80 x 48 uniform mesh leads to
good results except near the contraction, where it departs markedly from the other solutions. The
CPU time required to obtain convergence was similar for the meshes with about the same
number of grid nodes. However, if the accuracy attained with the embedding grid is to be
obtained with a conventional mesh, then savings in CPU time become evident. For example, the
solution for the 160 x 96 uniform grid requires about 14 times more CPU time than the solution
obtained using the embedding grid.

4. CONCLUSIONS

A grid-embedding technique for the solution of two-dimensional incompressible flows governed
by the Navier-Stokes equations and continuity equation was presented using the finite volume
rnethod and a non-staggered grid system. The main features of the method consist of the
simultaneous solution of the finite difference equations for the whole computational domain for
any degree of local grid refinement. Five different test flow cases were solved and the main
conclusions may be summarized as follows.

(il The grid-embedding technique proves to be adequate to improve the accuracy of the
solution of the elliptic form of the flow equations when compared with standard Cartesian
meshes using the same number of control volumes.

(ii) The interpolation practices described in the paper for the calculation of control volume
fluxes across the interfaces have proved to yield stabilizing effects in the iterative
procedure.

(iii) The use of the SIMPLE solution algorithm for pressure-velocity coupling was successfully

implemented with the grid-embedding technique. Good agreement was found between the
predictions and the analytical solutions or experimental results for the five test flow cases

analysed.
(iv) The solutions obtained with the grid-embedding technique yielded a large reduction in

computing time compared with standard grids to achieve the same accuracy.
(v) For complex flow geometries where rectangular solid boundaries are immersed in the

computational domain, e.g. flow in a sudden plane contraction, the present technique can
yield large memory savings.

(vi) The present technique can be improved by the incorporation of an intelligent adaptive
embedding grid based on any error estimation analysis.
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